精英家教网 > 高中数学 > 题目详情

如图,在四棱锥中,底面为菱形,的中点。

(1)若,求证:平面
(2)点在线段上,,试确定的值,使

(1)证明详见解析;(2)

解析试题分析:(1)由已知条件可证AD⊥BQ,AD⊥PQ,根据平面与平面垂直的判定定理即可求证平面PQB⊥平面PAD.
(2)连结AC交BQ于N,由AQ∥BC,可证△ANQ∽△BNC,即得,由直线与平面平行的性质,可证PA∥MN,即得,所以PM=PC,即t=.
试题解析:(1)连BD,四边形ABCD菱形, ∵AD⊥AB, ∠BAD="60°"
△ABD为正三角形, Q为AD中点, ∴AD⊥BQ
∵PA=PD,Q为AD的中点,AD⊥PQ
又BQ∩PQ=Q ∴AD⊥平面PQB, AD平面PAD
∴平面PQB⊥平面PAD; 
(2)当时,平面 
下面证明,若平面,连 
可得,, 
平面,平面,平面平面, 
  即:  
考点:1.平面与平面垂直的判定;2.直线与平面平行的性质及直线与直线平行的性质.

练习册系列答案
相关习题

科目:高中数学 来源: 题型:解答题

如图,三棱锥P ABC中,已知PA⊥平面ABC,△ABC是边长为2的正三角形,D,E分别为PB,PC中点

(1)若PA=2,求直线AE与PB所成角的余弦值;
(2)若PA,求证:平面ADE⊥平面PBC

查看答案和解析>>

科目:高中数学 来源: 题型:解答题

如图,在三棱柱中,侧棱底面

(1)证明:平面
(2)若是棱的中点,在棱上是否存在一点,使平面?证明你的结论.

查看答案和解析>>

科目:高中数学 来源: 题型:解答题

如图,菱形的边长为4,.将菱形沿对角线折起,得到三棱锥,点是棱的中点,.

(1)求证:平面
(2)求证:平面平面
(3)求三棱锥的体积.

查看答案和解析>>

科目:高中数学 来源: 题型:解答题

如图,直三棱柱中,AB=BC,,Q是AC上的点,AB1//平面BC1Q.

(Ⅰ)确定点Q在AC上的位置;
(Ⅱ)若QC1与平面BB1C1C所成角的正弦值为,求二面角Q-BC1—C的余弦值.

查看答案和解析>>

科目:高中数学 来源: 题型:解答题

如图,已知多面体的底面是边长为的正方形,底面,且
(Ⅰ )求多面体的体积;
(Ⅱ )求证:平面EAB⊥平面EBC;
(Ⅲ)记线段CB的中点为K,在平面内过K点作一条直线与平面平行,要求保留作图痕迹,但不要求证明.

查看答案和解析>>

科目:高中数学 来源: 题型:解答题

如图,六棱锥的底面是边长为1的正六边形,底面
(Ⅰ)求证:平面平面
(Ⅱ)若直线PC与平面PDE所成角的正弦值为,求六棱锥高的大小。

查看答案和解析>>

科目:高中数学 来源: 题型:解答题

如图1,在四棱锥中,底面,面为正方形,为侧棱上一点,上一点.该四棱锥的正(主)视图和侧(左)视图如图2所示.

(Ⅰ)求四面体的体积;
(Ⅱ)证明:∥平面
(Ⅲ)证明:平面平面

查看答案和解析>>

科目:高中数学 来源: 题型:解答题

如图所示,矩形中,⊥平面上的点,且⊥平面.

(1)求证:⊥平面
(2)求三棱锥的体积.

查看答案和解析>>

同步练习册答案