精英家教网 > 高中数学 > 题目详情

如图,直三棱柱中,AB=BC,,Q是AC上的点,AB1//平面BC1Q.

(Ⅰ)确定点Q在AC上的位置;
(Ⅱ)若QC1与平面BB1C1C所成角的正弦值为,求二面角Q-BC1—C的余弦值.

(Ⅰ)Q为AC的中点; (Ⅱ)二面角Q-BC1-C的余弦值为

解析试题分析:(Ⅰ)借助直线AB1∥平面BC1Q,利用面面平行的性质定理可知AB1∥PQ,然后确定点Q的位置;(Ⅱ)利用空间向量的方法求解,分别求出面BC1C的法向量为m=(1,0,0)和 平面C1BQ的法向量n=(1,-,2),然后利用向量的夹角公式计算二面角Q-BC1-C的余弦值.
试题解析:(Ⅰ)连接B1C交BC1于点P,连接PQ.
因为直线AB1∥平面BC1Q,AB1Ì平面AB1C,平面BC1Q∩平面AB1C=PQ,
所以AB1∥PQ.
因为P为B1C的中点,且AB1∥PQ,
所以,Q为AC的中点.      
(Ⅱ)如图建立空间直角坐标系.

设AB=BC=a,BB1=b,则
面BC1C的法向量为m=(1,0,0).
B(0,0,0),C1(0,a,b),Q(a, a,0),
=(0,a,b),=(-a, a,b).
因QC1与面BC1C所成角的正弦值为
,解得b=a.
设平面C1BQ的法向量n=(x,y,z),则
取n=(1,-,2).
所以有cosám,nñ=
故二面角Q-BC1-C的余弦值为
考点:1.平行关系的证明与判断;2.二面角;3.空间向量法.

练习册系列答案
相关习题

科目:高中数学 来源: 题型:解答题

如图,在等腰梯形中,是梯形的高,,现将梯形沿折起,使,且,得一简单组合体如图所示,已知分别为的中点.

(1)求证:平面
(2)求证:平面.

查看答案和解析>>

科目:高中数学 来源: 题型:解答题

如图,边长为2的正方形中,点的中点,点的中点,将△、△ 分别沿折起,使两点重合于点,连接.

(1)求证:;     (2)求点到平面的距离.

查看答案和解析>>

科目:高中数学 来源: 题型:解答题

如图,在四棱锥中,侧棱底面,底面为矩形,上一点,

(I)若的中点,求证平面
(II)求三棱锥的体积.

查看答案和解析>>

科目:高中数学 来源: 题型:解答题

在边长为的正方形中,分别为的中点,分别为的中点,现沿折叠,使三点重合,重合后的点记为,构成一个三棱锥.

(1)请判断与平面的位置关系,并给出证明;
(2)证明平面
(3)求四棱锥的体积.

查看答案和解析>>

科目:高中数学 来源: 题型:解答题

如图,在四棱锥中,底面为菱形,的中点。

(1)若,求证:平面
(2)点在线段上,,试确定的值,使

查看答案和解析>>

科目:高中数学 来源: 题型:解答题

如图,在四棱锥中,⊥底面,四边形是直角梯形,.

(Ⅰ)求证:平面⊥平面
(Ⅱ)若二面角的余弦值为,求.

查看答案和解析>>

科目:高中数学 来源: 题型:解答题

如图,四棱锥中,底面,四边形中,.
(Ⅰ)求证:平面平面
(Ⅱ)设
(ⅰ) 若直线与平面所成的角为,求线段的长;
(ⅱ) 在线段上是否存在一个点,使得点到点的距离都相等?说明理由.

查看答案和解析>>

科目:高中数学 来源: 题型:解答题

已知三棱锥,平面平面,AB=AD=1,AB⊥AD,DB=DC,DB⊥DC

(1) 求证:AB⊥平面ADC;
(2) 求三棱锥的体积;
(3) 求二面角的正切值.

查看答案和解析>>

同步练习册答案