精英家教网 > 高中数学 > 题目详情

如图,在等腰梯形中,是梯形的高,,现将梯形沿折起,使,且,得一简单组合体如图所示,已知分别为的中点.

(1)求证:平面
(2)求证:平面.

(1)证明过程详见解析;(2)证明过程详见解析.

解析试题分析:本题考查线面平行、线面垂直的证明,考查学生的空间想象能力和推理论证能力.第一问,利用矩形和三角形的性质,先证明平行于,利用线面平行的判定定理证明;第二问,注意折起前和折起后的一些性质是不变的,要证明线面垂直,只需证明的是线和平面内的2条相交直线都垂直.
试题解析:(1)证明:连结.∵四边形是矩形,中点,
中点,
中,中点,故.
平面平面,∴平面.(5分)
(2)依题意知 且
平面.
平面,∴.
中点,∴
结合,知四边形是平行四边形,
.
,∴,∴,即.
,∴平面.(12分)
考点:1.线面平行的判定定理;2.线面垂直的判定.

练习册系列答案
相关习题

科目:高中数学 来源: 题型:解答题

如图,四棱锥的底面是正方形,,点在棱上.

(1)求证:平面平面
(2)当,且时,确定点的位置,即求出的值.
(3)在(2)的条件下若F是PD的靠近P的一个三等分点,求二面角A-EF-D的余弦值.

查看答案和解析>>

科目:高中数学 来源: 题型:解答题

如图,长方体中,,点E是AB的中点.

(1)证明:平面;
(2)证明:;
(3)求二面角的正切值.

查看答案和解析>>

科目:高中数学 来源: 题型:解答题

如图所示,在圆锥PO中, PO=,?O的直径AB=2, C为弧AB的中点,D为AC的中点.

(1)求证:平面POD^平面PAC;
(2)求二面角B—PA—C的余弦值.

查看答案和解析>>

科目:高中数学 来源: 题型:解答题

如图,在四棱锥中,底面ABCD是正方形,侧棱底面ABCD,,E是PC的中点.

(Ⅰ)证明 平面EDB;
(Ⅱ)求EB与底面ABCD所成的角的正切值.

查看答案和解析>>

科目:高中数学 来源: 题型:解答题

如图,三棱锥P ABC中,已知PA⊥平面ABC,△ABC是边长为2的正三角形,D,E分别为PB,PC中点

(1)若PA=2,求直线AE与PB所成角的余弦值;
(2)若PA,求证:平面ADE⊥平面PBC

查看答案和解析>>

科目:高中数学 来源: 题型:解答题

在三棱拄中,侧面,已知.

(Ⅰ)求证:平面
(Ⅱ)试在棱(不包含端点)上确定一点的位置,使得
(Ⅲ)在(Ⅱ)的条件下,求和平面所成角正弦值的大小.                                    

查看答案和解析>>

科目:高中数学 来源: 题型:解答题

如图,在四棱锥中,底面为菱形,其中的中点.

(1) 求证:
(2) 若平面平面,且的中点,求四棱锥的体积.

查看答案和解析>>

科目:高中数学 来源: 题型:解答题

如图,直三棱柱中,AB=BC,,Q是AC上的点,AB1//平面BC1Q.

(Ⅰ)确定点Q在AC上的位置;
(Ⅱ)若QC1与平面BB1C1C所成角的正弦值为,求二面角Q-BC1—C的余弦值.

查看答案和解析>>

同步练习册答案