如图,在四棱锥
中,底面ABCD是正方形,侧棱
底面ABCD,
,E是PC的中点.![]()
(Ⅰ)证明
平面EDB;
(Ⅱ)求EB与底面ABCD所成的角的正切值.
(Ⅰ)见解析;(Ⅱ)
.
解析试题分析:(Ⅰ)令AC、BD交于点O,连接OE,证明OE∥AP,即可证明AP∥面BDE;(Ⅱ)先找到直线与平面所成的角,令F是CD中点,又E是PC中点,连结EF,BF,可以证明EF⊥面ABCD,故∠EBF为面BE与面ABCD所成的角,在Rt⊿BEF中求出其正切值.
试题解析:(Ⅰ)令AC、BD交于点O,连接OE,∵O是AC中点,又E是PC中点
∴ OE∥AP 3分
又OE
面BDE,AP
面BDE 5分
∴AP∥面BDE 6分
(Ⅱ)令F是CD中点,又E是PC中点,连结EF,BF
∴EF∥PD,又PD⊥面ABCD
∴EF⊥面ABCD 8分
∴∠EBF为面BE与面ABCD所成的角.
令PD=CD=2a
则CD="EF=a," BF=
10分
在Rt⊿BEF中,![]()
故BE与面ABCD所成角的正切是
. 12分
考点:线面平行的判定、直线与平面所成的角、勾股定理.
科目:高中数学 来源: 题型:解答题
如图,
是以
为直径的半圆上异于点
的点,矩形
所在的平面垂直于该半圆所在平面,且![]()
![]()
(Ⅰ).求证:
;
(Ⅱ).设平面
与半圆弧的另一个交点为
,
①.求证:
//
;
②.若
,求三棱锥E-ADF的体积.
查看答案和解析>>
科目:高中数学 来源: 题型:解答题
如图,在四棱锥P-ABCD中,底面ABCD为直角梯形,
,
,平面
底面
,
为
中点,M是棱PC上的点,
.![]()
(1)若点M是棱PC的中点,求证:
平面
;
(2)求证:平面
底面
;
(3)若二面角M-BQ-C为
,设PM=tMC,试确定t的值.
查看答案和解析>>
科目:高中数学 来源: 题型:解答题
在边长为
的正方形
中,
分别为
的中点,
分别为
的中点,现沿
折叠,使
三点重合,重合后的点记为
,构成一个三棱锥.![]()
(1)请判断
与平面
的位置关系,并给出证明;
(2)证明
平面
;
(3)求四棱锥
的体积.
查看答案和解析>>
湖北省互联网违法和不良信息举报平台 | 网上有害信息举报专区 | 电信诈骗举报专区 | 涉历史虚无主义有害信息举报专区 | 涉企侵权举报专区
违法和不良信息举报电话:027-86699610 举报邮箱:58377363@163.com