精英家教网 > 高中数学 > 题目详情

如图,在四棱锥中,底面ABCD是正方形,侧棱底面ABCD,,E是PC的中点.

(Ⅰ)证明 平面EDB;
(Ⅱ)求EB与底面ABCD所成的角的正切值.

(Ⅰ)见解析;(Ⅱ).

解析试题分析:(Ⅰ)令AC、BD交于点O,连接OE,证明OE∥AP,即可证明AP∥面BDE;(Ⅱ)先找到直线与平面所成的角,令F是CD中点,又E是PC中点,连结EF,BF,可以证明EF⊥面ABCD,故∠EBF为面BE与面ABCD所成的角,在Rt⊿BEF中求出其正切值.
试题解析:(Ⅰ)令AC、BD交于点O,连接OE,∵O是AC中点,又E是PC中点
∴ OE∥AP                                  3分
又OE面BDE,AP面BDE                  5分
∴AP∥面BDE                                    6分
(Ⅱ)令F是CD中点,又E是PC中点,连结EF,BF
∴EF∥PD,又PD⊥面ABCD
∴EF⊥面ABCD                                   8分
∴∠EBF为面BE与面ABCD所成的角.
令PD=CD=2a
则CD="EF=a," BF=                  10分
在Rt⊿BEF中,
故BE与面ABCD所成角的正切是.              12分
考点:线面平行的判定、直线与平面所成的角、勾股定理.

练习册系列答案
相关习题

科目:高中数学 来源: 题型:解答题

如图,是以为直径的半圆上异于点的点,矩形所在的平面垂直于该半圆所在平面,且

(Ⅰ).求证:
(Ⅱ).设平面与半圆弧的另一个交点为,
①.求证://;
②.若,求三棱锥E-ADF的体积.

查看答案和解析>>

科目:高中数学 来源: 题型:解答题

如图,在三棱锥中,底面, 的中点,.

(1)求证:平面
(2)求点到平面的距离。

查看答案和解析>>

科目:高中数学 来源: 题型:解答题

如图,底面为直角梯形的四棱锥中,AD∥BC,平面,BC=6.

(Ⅰ)求证:BD⊥平面PAC;
(Ⅱ)求二面角的余弦值.

查看答案和解析>>

科目:高中数学 来源: 题型:解答题

如图,四棱锥的底面是正方形,底面上一点

(1)求证:平面平面
(2)设,求点到平面的距离.

查看答案和解析>>

科目:高中数学 来源: 题型:解答题

如图,在等腰梯形中,是梯形的高,,现将梯形沿折起,使,且,得一简单组合体如图所示,已知分别为的中点.

(1)求证:平面
(2)求证:平面.

查看答案和解析>>

科目:高中数学 来源: 题型:解答题

如图,正三棱柱中,点的中点.

(Ⅰ)求证: 平面
(Ⅱ)求证:平面.

查看答案和解析>>

科目:高中数学 来源: 题型:解答题

如图,在四棱锥P-ABCD中,底面ABCD为直角梯形,,平面底面中点,M是棱PC上的点,

(1)若点M是棱PC的中点,求证:平面
(2)求证:平面底面
(3)若二面角M-BQ-C为,设PM=tMC,试确定t的值.

查看答案和解析>>

科目:高中数学 来源: 题型:解答题

在边长为的正方形中,分别为的中点,分别为的中点,现沿折叠,使三点重合,重合后的点记为,构成一个三棱锥.

(1)请判断与平面的位置关系,并给出证明;
(2)证明平面
(3)求四棱锥的体积.

查看答案和解析>>

同步练习册答案