精英家教网 > 高中数学 > 题目详情

如图,在直三棱柱中,底面△为等腰直角三角形,为棱上一点,且平面⊥平面.

(Ⅰ)求证:为棱的中点;(Ⅱ)为何值时,二面角的平面角为.

(Ⅰ)见解析;(Ⅱ)

解析试题分析:(Ⅰ)先点D作DE ⊥ A1 C 于E点,取AC的中点F,连BF ﹑EF,然后通过平面和平面垂直的性质定理及直三棱柱的定义可证EF∥AA1,又点F是AC的中点,则DB = BB1,即的中点;或者先证,再证. (Ⅱ)先在点D处建立空间直角坐标系,然后求出两平面DA1C和ADA1 的法向量分别为,由二面角的平面角为可知,得
据题意有:,从而 .或者利用几何法可求.
试题解析:(Ⅰ)过点D作DE ⊥ A1 C 于E点,取AC的中点F,连BF ﹑EF
∵面DA1 C⊥面AA1C1C且相交于A1 C,面DA1 C内的直线DE ⊥ A1 C
故直线                     3分
又∵面BA C⊥面AA1C1C且相交于AC,易知BF⊥AC,∴BF⊥面AA1C1C
由此知:DE∥BF ,从而有D,E,F,B共面,又易知BB1∥面AA1C1C,故有DB∥EF ,从而有EF∥AA1,又点F是AC的中点,所以DB = EF =  AA1 BB1,即的中点.             6分
(Ⅱ)解法1:建立如图所示的直角坐标系,

设AA1= 2b ,AB=BC = ,则D(0,0,b),  A1 (a,0,2b),  C (0,a,0) 
所以,
设面DA1C的法向量为
  可取                    8分
又可取平面AA1DB的法向量:

据题意有: 解得:                12分
(Ⅱ)解法2:延长A1 D与直线AB相交于G,易知CB⊥面AA1B1B,
过B作BH⊥A1 G于点H,连CH,由三垂线定理知:A1 G⊥CH,
由此知∠CHB为二面角A -A1D - C的平面角;                       9分
设AA1= 2b ,AB=BC =;在直角三角形A1A G中,易知AB = BG.
DBG中,BH =  = CHB中,tan∠CHB =  = ,据题意有: = tan600  ,解得:所以                12分
考点:1.平面和平面垂直的性质定理;2.直线和平面平行的判定和性质;3.用空间向量处理二面角

练习册系列答案
相关习题

科目:高中数学 来源: 题型:解答题

如图,正方形所在平面与圆所在的平面相交于,线段为圆的弦,垂直于圆所在的平面,垂足为圆上异于的点,设正方形的边长为,且.

(1)求证:平面平面
(2)若异面直线所成的角为与底面所成角为,二面角所成角为,求证

查看答案和解析>>

科目:高中数学 来源: 题型:解答题

如图,在四棱锥P-ABCD中,PD⊥底面ABCD,底面ABCD是直角梯形,DC∥AB,∠BAD=,且AB=2AD=2DC=2PD=4,E为PA的中点.

(1)证明:DE∥平面PBC;
(2)证明:DE⊥平面PAB.

查看答案和解析>>

科目:高中数学 来源: 题型:解答题

如图,在三棱锥中,平面为侧棱上一点,它的正(主)视图和侧(左)视图如图所示.

(1)证明:平面
(2)在的平分线上确定一点,使得平面,并求此时的长.

查看答案和解析>>

科目:高中数学 来源: 题型:解答题

如图,在三棱柱中,

(1)求证:
(2)若 ,在棱上确定一点P, 使二面角的平面角的余弦值为

查看答案和解析>>

科目:高中数学 来源: 题型:解答题

已知多面体中,平面平面的中点.

(1)求证:
(2)求直线与平面所成角的余弦值的大小.

查看答案和解析>>

科目:高中数学 来源: 题型:解答题

如图,在四棱锥P-ABCD中,PD⊥平面ABCD,PD=DC=BC=1,AB=2,AB∥DC,∠BCD=900

(1)求证:PC⊥BC;
(2)求点A到平面PBC的距离.

查看答案和解析>>

科目:高中数学 来源: 题型:解答题

如图,是以为直径的半圆上异于点的点,矩形所在的平面垂直于该半圆所在平面,且

(Ⅰ).求证:
(Ⅱ).设平面与半圆弧的另一个交点为,
①.求证://;
②.若,求三棱锥E-ADF的体积.

查看答案和解析>>

科目:高中数学 来源: 题型:解答题

如图,在三棱锥中,底面, 的中点,.

(1)求证:平面
(2)求点到平面的距离。

查看答案和解析>>

同步练习册答案