如图,正方形所在平面与圆所在的平面相交于,线段为圆的弦,垂直于圆所在的平面,垂足为圆上异于、的点,设正方形的边长为,且.
(1)求证:平面平面;
(2)若异面直线与所成的角为,与底面所成角为,二面角所成角为,求证
(1)详见解析;(2)详见解析.
解析试题分析:(1)证明平面平面,即证明平面,转化为证明直线与平面内的两条相交直线垂直;(2)立体几何中求空间角的方法有两种,一是常规法,找出(或作出)适合题意的角;证明找出的角符合对应角的要求;求出相关角的大小(或三角函数值).二是用向量法,即先确定两个向量(直线的方向向量或平面的法向量)求两个向量夹角的余弦值,注意确定所求的夹角与向量夹角的关系,最后得出所求的角或角的三角函数值.
试题解析:(1)圆所在的平面,在圆所在的平面上,,
又在正方形中,,,平面,
又平面,平面平面.
(2)平面,平面,,即为圆的直径,
又,且,,
以点为坐标原点,分别以为轴、轴,以垂直于底面的直线为轴,建立空间直角坐标系,则,,,
,,,,
又,,,
由此得,
设平面的一个法向量,则,即,
取,则,又平面的一个法向量为,
,,
于是,即.
考点:空间几何体的线线、线面关系,线面、面面角的求法.
科目:高中数学 来源: 题型:解答题
四棱锥P-ABCD中,侧面PAD⊥底面ABCD,底面ABCD是边长为2的正方形,又PA=PD,∠APD=60°,E、G分别是BC、PE的中点.
(1)求证:AD⊥PE;
(2)求二面角E-AD-G的正切值.
查看答案和解析>>
科目:高中数学 来源: 题型:解答题
已知:如图,等腰直角三角形的直角边,沿其中位线将平面折起,使平面⊥平面,得到四棱锥,设、、、的中点分别为、、、.
(1)求证:、、、四点共面;
(2)求证:平面平面;
(3)求异面直线与所成的角.
查看答案和解析>>
科目:高中数学 来源: 题型:解答题
如图所示,在四棱锥中,底面四边形是菱形,,是边长为2的等边三角形,,.
(Ⅰ)求证:底面;
(Ⅱ)求直线与平面所成角的大小;
(Ⅲ)在线段上是否存在一点,使得∥平面?如果存在,求的值,如果不存在,请说明理由.
查看答案和解析>>
科目:高中数学 来源: 题型:解答题
如图所示,已知AB为圆O的直径,点D为线段AB上一点,且,点C为圆O上一点,且.点P在圆O所在平面上的正投影为点D,PD=DB.
(1)求证:平面;
(2)求点到平面的距离.
查看答案和解析>>
科目:高中数学 来源: 题型:解答题
如图,在四棱锥P—ABCD中,ABCD为平行四边形,且BC⊥平面PAB,PA⊥AB,M为PB的中点,PA=AD=2.
(Ⅰ)求证:PD//平面AMC;
(Ⅱ)若AB=1,求二面角B—AC—M的余弦值。
查看答案和解析>>
科目:高中数学 来源: 题型:解答题
如图,已知四棱锥P-ABCD的底面为菱形,且∠ABC =60°,AB=PC=2,AP=BP=.
(Ⅰ)求证:平面PAB⊥平面ABCD ;
(Ⅱ)求二面角A-PC-D的平面角的余弦值.
查看答案和解析>>
湖北省互联网违法和不良信息举报平台 | 网上有害信息举报专区 | 电信诈骗举报专区 | 涉历史虚无主义有害信息举报专区 | 涉企侵权举报专区
违法和不良信息举报电话:027-86699610 举报邮箱:58377363@163.com