如图,正方形
所在平面与圆
所在的平面相交于
,线段
为圆
的弦,
垂直于圆
所在的平面,垂足
为圆
上异于
、
的点,设正方形
的边长为
,且
.![]()
(1)求证:平面
平面
;
(2)若异面直线
与
所成的角为
,
与底面
所成角为
,二面角
所成角为
,求证![]()
(1)详见解析;(2)详见解析.
解析试题分析:(1)证明平面
平面
,即证明
平面
,转化为证明直线
与平面
内的两条相交直线垂直;(2)立体几何中求空间角的方法有两种,一是常规法,找出(或作出)适合题意的角;证明找出的角符合对应角的要求;求出相关角的大小(或三角函数值).二是用向量法,即先确定两个向量(直线的方向向量或平面的法向量)求两个向量夹角的余弦值,注意确定所求的夹角与向量夹角的关系,最后得出所求的角或角的三角函数值.
试题解析:(1)
圆
所在的平面,
在圆
所在的平面上,
,
又在正方形
中,
,
,
平面
,
又
平面
,
平面
平面
.
(2)![]()
平面
,
平面
,
,即
为圆
的直径,
又
,且
,
,
以点
为坐标原点,分别以
为
轴、
轴,以垂直于底面
的直线为
轴,建立空间直角坐标系,则
,
,
,
,
,![]()
,
,
又
,
,
,
由此得
,
设平面
的一个法向量
,则
,即
,
取
,则
,又平面
的一个法向量为
,
,![]()
,
于是
,即
.
考点:空间几何体的线线、线面关系,线面、面面角的求法.
科目:高中数学 来源: 题型:解答题
四棱锥P-ABCD中,侧面PAD⊥底面ABCD,底面ABCD是边长为2的正方形,又PA=PD,∠APD=60°,E、G分别是BC、PE的中点.![]()
(1)求证:AD⊥PE;
(2)求二面角E-AD-G的正切值.
查看答案和解析>>
科目:高中数学 来源: 题型:解答题
已知:如图,等腰直角三角形
的直角边
,沿其中位线
将平面
折起,使平面
⊥平面
,得到四棱锥
,设
、
、
、
的中点分别为
、
、
、
.![]()
![]()
![]()
(1)求证:
、
、
、
四点共面;
(2)求证:平面
平面
;
(3)求异面直线
与
所成的角.
查看答案和解析>>
科目:高中数学 来源: 题型:解答题
如图所示,在四棱锥
中,底面四边形
是菱形,
,
是边长为2的等边三角形,
,
.![]()
(Ⅰ)求证:
底面
;
(Ⅱ)求直线
与平面
所成角的大小;
(Ⅲ)在线段
上是否存在一点
,使得
∥平面
?如果存在,求
的值,如果不存在,请说明理由.
查看答案和解析>>
科目:高中数学 来源: 题型:解答题
如图所示,已知AB为圆O的直径,点D为线段AB上一点,且
,点C为圆O上一点,且
.点P在圆O所在平面上的正投影为点D,PD=DB.![]()
(1)求证:
平面
;
(2)求点
到平面
的距离.
查看答案和解析>>
科目:高中数学 来源: 题型:解答题
如图,在四棱锥P—ABCD中,ABCD为平行四边形,且BC⊥平面PAB,PA⊥AB,M为PB的中点,PA=AD=2.![]()
(Ⅰ)求证:PD//平面AMC;
(Ⅱ)若AB=1,求二面角B—AC—M的余弦值。
查看答案和解析>>
科目:高中数学 来源: 题型:解答题
如图,已知四棱锥P-ABCD的底面为菱形,且∠ABC =60°,AB=PC=2,AP=BP=
.![]()
(Ⅰ)求证:平面PAB⊥平面ABCD ;
(Ⅱ)求二面角A-PC-D的平面角的余弦值.
查看答案和解析>>
湖北省互联网违法和不良信息举报平台 | 网上有害信息举报专区 | 电信诈骗举报专区 | 涉历史虚无主义有害信息举报专区 | 涉企侵权举报专区
违法和不良信息举报电话:027-86699610 举报邮箱:58377363@163.com