精英家教网 > 高中数学 > 题目详情

如图,已知四棱锥中,底面是直角梯形,平面. 

(Ⅰ)求证:平面
(Ⅱ)求证:平面
(Ⅲ)若的中点,求三棱锥的体积.

证明过程详见试题解析.

解析试题分析:(Ⅰ)要证明直线与平面平行,就是要证明直线与平面内一条直线平行,根据题意显然直线满足要求. (Ⅱ)要证明平面,就是要证明直线与平面内两条相交直线垂直.根据题意符合要求.(Ⅲ)要求三棱锥的体积,就是要求出的面积以及三棱锥的高.
试题解析:(Ⅰ)证明:,且平面
平面
(Ⅱ)证明:在直角梯形中,过于点,则四边形为矩形
,又,∴,在Rt△中,

,则

 ∴
 ∴平面 
(Ⅲ)∵中点,
到面的距离是到面距离的一半

考点:线面平行,线面垂直,三棱锥体积.

练习册系列答案
相关习题

科目:高中数学 来源: 题型:解答题

如图,在直三棱柱ABC-A1B1C1中,AC=3,BC=4,AB=5,AA1=4,点D是AB的中点.

(1)求证:∥平面
(2)求异面直线所成角的余弦值.

查看答案和解析>>

科目:高中数学 来源: 题型:解答题

如图,在四棱锥中,底面为直角梯形,垂直于底面分别为的中点.

(1)求证:
(2)求点到平面的距离.

查看答案和解析>>

科目:高中数学 来源: 题型:解答题

将边长为的正方形和等腰直角三角形按图拼为新的几何图形,中,,连结,若,中点

(Ⅰ)求所成角的大小;
(Ⅱ)若中点,证明:平面
(Ⅲ)证明:平面平面

查看答案和解析>>

科目:高中数学 来源: 题型:解答题

如图,在三棱锥中,平面为侧棱上一点,它的正(主)视图和侧(左)视图如图所示.

(1)证明:平面
(2)在的平分线上确定一点,使得平面,并求此时的长.

查看答案和解析>>

科目:高中数学 来源: 题型:解答题

如图,在三棱柱中,侧面均为正方形,∠,点是棱的中点.

(Ⅰ)求证:⊥平面
(Ⅱ)求证:平面
(Ⅲ)求二面角的余弦值.

查看答案和解析>>

科目:高中数学 来源: 题型:解答题

如图,在长方体,中,,点在棱AB上移动.

(Ⅰ)证明:
(Ⅱ)求点到平面的距离;
(Ⅲ)等于何值时,二面角的大小为

查看答案和解析>>

科目:高中数学 来源: 题型:解答题

如图,在四棱锥中,底面为菱形,的中点.

(1)若,求证:平面平面
(2)点在线段上,,若平面平面,且,求二面角的大小.

查看答案和解析>>

科目:高中数学 来源: 题型:解答题

如图所示,在正方体ABCD﹣A1B1C1D1中,棱长AB=1.

(Ⅰ)求异面直线A1B与 B1C所成角的大小;(Ⅱ)求证:平面A1BD∥平面B1CD1

查看答案和解析>>

同步练习册答案