如图所示,在正方体ABCD﹣A1B1C1D1中,棱长AB=1.
(Ⅰ)求异面直线A1B与 B1C所成角的大小;(Ⅱ)求证:平面A1BD∥平面B1CD1.
(Ⅰ) (Ⅱ)见解析
解析试题分析:(Ⅰ)根据异面直线所成角的定义,易知图中 就为所求角,又三角形为正三角形;(Ⅱ)根据面面平行的判定定理,要证平面A1BD∥平面B1CD 1 可转化为两相交直线BD和A1B平行于平面B1CD 1,而直线与平面平行又可转化为直线与直线平行角的处理其中很关键的一步就是落实角,而异面直线所成角,往往就是通过平移其中的一条直线或两条直线转化为相交位置出现角,再结合平面几何知识进行求解;空间位置关系的证明,其核心就是转化化归,本小题中线线平行、线面平行和面面平行之间在不断的转化.
试题解析:(Ⅰ)因为B1C//A1D,所以 为异面直线A1B与B1C所成角。在 中,易得
(Ⅱ)
考点:1、异面直线的角;2、面面平行;4、线面平行和线线平行.
科目:高中数学 来源: 题型:解答题
如图,四边形ABCD为平行四边形,四边形ADEF是正方形,且BD⊥平面CDE,H是BE的中点,G是AE,DF的交点.
(1)求证:GH∥平面CDE;
(2)求证:面ADEF⊥面ABCD.
查看答案和解析>>
科目:高中数学 来源: 题型:解答题
如图所示,在四棱锥P-ABCD中,底面ABCD是正方形,侧棱PD^底面ABCD,PD=DC,点E是PC的中点,作EF^PB交PB于点F,
(1)求证:PA//平面EDB;
(2)求证:PB^平面EFD;
(3)求二面角C-PB-D的大小.
查看答案和解析>>
科目:高中数学 来源: 题型:解答题
如图所示,在四棱锥P-ABCD中,底面ABCD为矩形,PA⊥平面ABCD,点E在线段PC上,PC⊥平面BDE.
(1) 证明:BD⊥平面PAC;
(2) 若AD=2,当PC与平面ABCD所成角的正切值为时,求四棱锥P-ABCD的外接球表面积.
查看答案和解析>>
科目:高中数学 来源: 题型:解答题
如图,四棱锥中,是正三角形,四边形是矩形,且平面平面,,.
(Ⅰ)若点是的中点,求证:平面;
(II)试问点在线段上什么位置时,二面角的余弦值为.
查看答案和解析>>
科目:高中数学 来源: 题型:解答题
如图,在四棱锥中,侧面底面,,为中点,底面是直角梯形,,,,.
(1) 求证:平面;
(2) 求证:平面平面;
(3) 设为棱上一点,,试确定的值使得二面角为.
查看答案和解析>>
湖北省互联网违法和不良信息举报平台 | 网上有害信息举报专区 | 电信诈骗举报专区 | 涉历史虚无主义有害信息举报专区 | 涉企侵权举报专区
违法和不良信息举报电话:027-86699610 举报邮箱:58377363@163.com