精英家教网 > 高中数学 > 题目详情

如图,已知在四棱锥中, 底面四边形是直角梯形, ,,.

(1)求证:
(2)求直线与底面所成角的正切值.

(1)详见解析;(2).

解析试题分析:(1)要证面面垂直,需在一个面内找一条直线与另外一个平面垂直,此题在面内,找到直线,由平面可推出,而,由线面垂直的判定就可得到平面,命题得证;(2)连结,由平面可知,直线与底面所成的角就是,在直角三角形中进行求解即可.
试题解析:(1)证明:∵平面平面
           2分
又∵

           4分
又∵
∴面         6分
(2)解:连接


在底面内的射影
为直线与底面所成角   9分


又∵
,即直线与底面所成角的正切值为 12分.
考点:1.面面垂直的证明;2.线面角的计算.

练习册系列答案
相关习题

科目:高中数学 来源: 题型:解答题

如图,在直三棱柱中,,点的中点。

(1)求证:∥平面
(2)如果点的中点,求证:平面平面.

查看答案和解析>>

科目:高中数学 来源: 题型:解答题

四边形都是边长为的正方形,点E是的中点,平面

(1)求证:平面
(2)求证:平面平面
(3)求三棱锥A—BDE的体积

查看答案和解析>>

科目:高中数学 来源: 题型:解答题

如图,在三棱锥S—ABC中,SC⊥平面ABC,点P、M分别是SC和SB的中点,设PM=AC=1,∠ACB=90°,直线AM与直线SC所成的角为60°。

(1)求证:平面MAP⊥平面SAC。
(2)求二面角M—AC—B的平面角的正切值;

查看答案和解析>>

科目:高中数学 来源: 题型:解答题

如图,平面的中点.

(1)求证:平面
(2)求证:平面平面.

查看答案和解析>>

科目:高中数学 来源: 题型:解答题

如图,在底面为平行四边形的四棱柱中,底面,,,

(Ⅰ)求证:平面平面
(Ⅱ)若,求四棱锥的体积.

查看答案和解析>>

科目:高中数学 来源: 题型:解答题

如图,在四棱锥中,是正方形,平面分别是的中点.

(1)在线段上确定一点,使平面,并给出证明;
(2)证明平面平面,并求出到平面的距离.

查看答案和解析>>

科目:高中数学 来源: 题型:解答题

如图,在四棱锥P-ABCD中,四边形ABCD是矩形,平面PCD⊥平面ABCD,M为PC中点.求证:

(1)PA∥平面MDB;
(2)PD⊥BC.

查看答案和解析>>

科目:高中数学 来源: 题型:解答题

直四棱柱中,底面为菱形,且延长线上的一点,.设.

(Ⅰ)求二面角的大小;
(Ⅱ)在上是否存在一点,使?若存在,求的值;不存在,说明理由.

查看答案和解析>>

同步练习册答案