如图,几何体EABCD是四棱锥,△ABD为正三角形,CB=CD,EC⊥BD.
(1)求证:BE=DE;
(2)若∠BCD=120°,M为线段AE的中点,求证:DM∥平面BEC.
(1)见解析 (2)见解析
解析证明:(1)如图所示,取BD的中点O,连接CO,EO.
由于CB=CD,
所以CO⊥BD.
又EC⊥BD,EC∩CO=C,
CO,EC?平面EOC,
所以BD⊥平面EOC,
因此BD⊥EO.
又O为BD的中点,
所以BE=DE.
(2)法一 如图所示,取AB的中点N,连接DM,DN,MN.
因为M是AE的中点,
所以MN∥BE.
又MN平面BEC,
BE?平面BEC,
所以MN∥平面BEC.
又因为△ABD为正三角形,
所以∠BDN=30°.
又CB=CD,∠BCD=120°,
因此∠CBD=30°.
所以DN∥BC.
又DN平面BEC,BC?平面BEC,
所以DN∥平面BEC.
又MN∩DN=N,
所以平面DMN∥平面BEC.
又DM?平面DMN,
所以DM∥平面BEC.
法二 如图所示,延长AD,BC交于点F,连接EF.
因为CB=CD,∠BCD=120°,
所以∠CBD=30°.
因为△ABD为正三角形,
所以∠BAD=60°,
∠ABC=90°,
因此∠AFB=30°,
所以AB=AF.
又AB=AD,
所以D为线段AF的中点,
连接DM,由点M是线段AE的中点,
得DM∥EF.
又DM平面BEC,EF?平面BEC,
所以DM∥平面BEC.
科目:高中数学 来源: 题型:解答题
如图,在斜三棱柱中,侧面⊥底面,侧棱与底面成60°的角,.底面是边长为2的正三角形,其重心为点,是线段上一点,且.
(1)求证://侧面;
(2)求平面与底面所成锐二面角的余弦值;
查看答案和解析>>
科目:高中数学 来源: 题型:解答题
如图,在直三棱柱中,D、E分别是BC和的中点,已知AB=AC=AA1=4,ÐBAC=90°.
(1)求证:⊥平面;
(2)求二面角的余弦值;
(3)求三棱锥的体积.
查看答案和解析>>
科目:高中数学 来源: 题型:解答题
如图五面体中,四边形ABCD是矩形,DA⊥平面ABEF,AB∥EF,AB=EF=2,AF=BE=2,P、Q、M分别为AE、BD、EF的中点.
(1)求证:PQ∥平面BCE;
(2)求证:AM⊥平面ADF.
查看答案和解析>>
科目:高中数学 来源: 题型:解答题
已知如图①所示,矩形纸片AA′A1′A1,点B、C、B1、C1分别为AA′、A1A1′的三等分点,将矩形纸片沿BB1、CC1折成如图②形状(正三棱柱),若面对角线AB1⊥BC1,求证:A1C⊥AB1.
(图①)
(图②)
查看答案和解析>>
科目:高中数学 来源: 题型:解答题
如图,在正方体ABCD-A1B1C1D1中,E,F,G,M,N分别是B1C1,A1D1,A1B1,BD,B1C的中点,
求证:(1)MN∥平面CDD1C1.
(2)平面EBD∥平面FGA.
查看答案和解析>>
湖北省互联网违法和不良信息举报平台 | 网上有害信息举报专区 | 电信诈骗举报专区 | 涉历史虚无主义有害信息举报专区 | 涉企侵权举报专区
违法和不良信息举报电话:027-86699610 举报邮箱:58377363@163.com