精英家教网 > 高中数学 > 题目详情

如图,在直三棱柱中,D、E分别是BC和的中点,已知AB=AC=AA1=4,ÐBAC=90°.

(1)求证:⊥平面
(2)求二面角的余弦值;
(3)求三棱锥的体积.

(1)见解析   (2)    (3)8

解析试题分析:
(1)(2)(3)均可利用坐标法,即分别以建立三维空间坐标系.下面重点分析法2
(1)利用勾股定理可以求的线段的长,而要证明,只需要证明,首先可以三次利用勾股定理把的三条边长求出,再利用勾股定理证明,线段为等腰直角三角形ABC的三线合一即有,可得到,进而得到,即可通过线线垂直证明面DAE.
(2)要求二面角的余弦值,需要作出该二面角的平面角,为此过D做DM⊥AE于点M,连接B1M.,根据第一问有面AED且可以得到,则即为所求二面角的平面角,即该角的余弦值为.利用勾股定理即可得到的长,进而得到二面角的余弦值.
(3)由(1)可得,则该三棱锥可以以作为底面,高为来求的体积,而AD和三角形的面积都可以用勾股定理求的.
试题解析:

法1:依题意,建立如图所示的空间直角坐标系A-xyz.因为=4,所以A(0,0,0),B(4,0,0),E(0,4,2),D(2,2,0),B1(4,0,4).                         (1分)
(1).             (2分)
因为,所以,即.    (3分)
因为,所以,即.     (4分)
又AD、AEÌ平面AED,且AD∩AE=A,故⊥平面.          (5分)
(2)由(1)知为平面AED的一个法向量.            (6分)
设平面 B1AE的法向量为,因为
所以由,得,令y=1,得x=2,z=-2.即.(7分)
,                (8分)
∴二面角的余弦值为.                             (9分)
(3)由,得,所以AD⊥DE. (10分)
,得.    (11分)
由(1)得B1D为三棱锥B1-ADE的高,且,             (12分)
所以

练习册系列答案
相关习题

科目:高中数学 来源: 题型:解答题

如图,在五面体ABCDEF中,四边形ABCD是矩形,DE⊥平面ABCD.

(1)求证:AB∥EF;
(2)求证:平面BCF⊥平面CDEF.

查看答案和解析>>

科目:高中数学 来源: 题型:解答题

如图,在棱长为2的正方体ABCD-A1B1C1D1中,E为棱CC1的中点。

(1)求证:BD⊥AE;
(2)求点A到平面BDE的距离.

查看答案和解析>>

科目:高中数学 来源: 题型:解答题

如图,在等腰直角三角形中, =900 ="6," 分别是上的点,  的中点.将沿折起,得到如图所示的四棱椎,其中

(1)证明:
(2)求二面角的平面角的余弦值.

查看答案和解析>>

科目:高中数学 来源: 题型:解答题

如图,几何体EABCD是四棱锥,△ABD为正三角形,CB=CD,EC⊥BD.

(1)求证:BE=DE;
(2)若∠BCD=120°,M为线段AE的中点,求证:DM∥平面BEC.

查看答案和解析>>

科目:高中数学 来源: 题型:解答题

如图,在四面体PABC中,PC⊥AB,PA⊥BC,点D,E,F,G分别是棱AP,AC,BC,PB的中点.

(1)求证:DE∥平面BCP.
(2)求证:四边形DEFG为矩形.
(3)是否存在点Q,到四面体PABC六条棱的中点的距离相等?说明理由.

查看答案和解析>>

科目:高中数学 来源: 题型:解答题

如图,在三棱锥SABC中,平面SAB⊥平面SBC,AB⊥BC,AS=AB,过A作AF⊥SB,垂足为F,点E、G分别是棱SA、

SC的中点.求证:
(1)平面EFG∥平面ABC;
(2)BC⊥SA.

查看答案和解析>>

科目:高中数学 来源: 题型:解答题

如图,正方形ABCD和三角形ACE所在的平面互相垂直.EF∥BD,AB=EF.求证:

(1)BF∥平面ACE;
(2)BF⊥BD.

查看答案和解析>>

科目:高中数学 来源: 题型:解答题

如图,A,B,C,D为空间四点.在△ABC中,AB=2,AC=BC=.等边三角形ADB以AB为轴转动.

(1)当平面ADB⊥平面ABC时,求CD.
(2)当△ADB转动时,是否总有AB⊥CD?证明你的结论.

查看答案和解析>>

同步练习册答案