精英家教网 > 高中数学 > 题目详情

如图,在三棱柱中,侧面为菱形,且的中点.

(1)求证:平面平面
(2)求证:∥平面

(1)证明见解析;(2)见解析.

解析试题分析:(1)要证面面垂直,根据判定定理,要证线面垂直,也即要找线线垂直,在这个三棱柱中,已知的或者显而易见的垂直是我们首先要考虑的,如是底面等腰三角形的底边的中点,则有,又侧面是菱形且,那么在中可求得,即,从而我们可得到,结论得出;(2)要证线面平行,就是要在平面内找一条与待证直线平行的直线,这里我们可以想象一下,把直线平移,平移到过平面时,那么要找的直线就出来了,本题中把直线沿方向平移,当重合时,要找的直线就有了,因此我们通过连接相交于就是我们所需要的平行线.当然解题时注意定理所需的条件一个都不能少.
试题解析:(1)证明:∵为菱形,且
∴△为正三角形.       2分
的中点,∴
的中点,∴.       4分
,∴平面.       6分
平面,∴平面平面.       8分
(2)证明:连结,设,连结
∵三棱柱的侧面是平行四边形,∴中点.       10分
在△中,又∵的中点,∴.       12分
平面平面,∴∥平面.       14分
考点:(1)面面垂直;(2)线面平行.

练习册系列答案
相关习题

科目:高中数学 来源: 题型:解答题

如图,在梯形ABCD中,AB//CD,AD=DC=CB=a,,四边形ACFE是矩形,且平面平面ABCD,点M在线段EF上.
(1)求证:平面ACFE;
(2)当EM为何值时,AM//平面BDF?证明你的结论.

查看答案和解析>>

科目:高中数学 来源: 题型:解答题

如图①,已知ABC是边长为l的等边三角形,D,E分别是AB,AC边上的点,AD=AE,F是BC的中点,AF与DE交于点G,将ABF沿AF折起,得到如图②所示的三棱锥A-BCF,其中BC=

(1)证明:DE//平面BCF;
(2)证明:CF平面ABF;
(3)当AD=时,求三棱锥F-DEG的体积

查看答案和解析>>

科目:高中数学 来源: 题型:解答题

如图,E是以AB为直径的半圆弧上异于A,B的点,矩形ABCD所在平面垂直于该半圆所在的平面,且AB=2AD=2。

(1).求证:EA⊥EC;
(2).设平面ECD与半圆弧的另一个交点为F。
①求证:EF//AB;
②若EF=1,求三棱锥E—ADF的体积

查看答案和解析>>

科目:高中数学 来源: 题型:解答题

如图所示,正方形ADEF与梯形ABCD所在的平面互相垂直,,,.

(1)求证:
(2)求直线与平面所成角的正切值;
(3)在上找一点,使得∥平面ADEF,请确定M点的位置,并给出证明.

查看答案和解析>>

科目:高中数学 来源: 题型:解答题

已知多面体ABCDFE中, 四边形ABCD为矩形,AB∥EF,AF⊥BF,平面ABEF⊥平面ABCD, O、M分别为AB、FC的中点,且AB = 2,AD =" EF" = 1.

(1)求证:AF⊥平面FBC;
(2)求证:OM∥平面DAF;
(3)设平面CBF将几何体EFABCD分成的两个锥体的体积分别为VF-ABCD,VF-CBE,求VF-ABCD∶VF-CBE的值.

查看答案和解析>>

科目:高中数学 来源: 题型:解答题

如图,在四棱锥P-ABCD中,ABCD为平行四边形,平面PAB,,.M为PB的中点.

(1)求证:PD//平面AMC;
(2)求锐二面角B-AC-M的余弦值.

查看答案和解析>>

科目:高中数学 来源: 题型:解答题

如图,四棱锥中,平面,底面为矩形,的中点.

(1)求证:
(2)在线段上是否存在一点,使得平面?若存在,求出的长;若不存在,请说明理由.

查看答案和解析>>

科目:高中数学 来源: 题型:解答题

如图,在三棱锥P-ABC中,△PAC,△ABC分别是以A、B为直角顶点的等腰直角三角形,AB=1.现给出三个条件:①PB=;②PB⊥BC;③平面PAB⊥平面ABC.试从中任意选取一个作为已知条件,并证明:PA⊥平面ABC;

查看答案和解析>>

同步练习册答案