精英家教网 > 高中数学 > 题目详情

已知多面体ABCDFE中, 四边形ABCD为矩形,AB∥EF,AF⊥BF,平面ABEF⊥平面ABCD, O、M分别为AB、FC的中点,且AB = 2,AD =" EF" = 1.

(1)求证:AF⊥平面FBC;
(2)求证:OM∥平面DAF;
(3)设平面CBF将几何体EFABCD分成的两个锥体的体积分别为VF-ABCD,VF-CBE,求VF-ABCD∶VF-CBE的值.

(1)(2)见解析(3)

解析试题分析:(1)要证,则需要证明与平面内的两条相交直线垂直,而根据题意已知,故只需再根据题意平面⊥平面,可证,从而证明,则可证明结论.
(2)要证∥平面,则需要在平面内找一条直线与平行,根据点都是中点的特点, 取中点,证明四边形为平行四边形,即有,则可证明结论.
(3)要求体积比,首先得找到体积,根据题意可知,分割后形成了两个棱锥,一个四棱锥,一个三棱锥;根据棱锥的体积公式,得找到底面积和高,而其中四棱锥的底面和高比较容易确定,而三棱锥中关键是确定底面和高,确定的依据就是是否有现成的线面垂直,显然,所以确定底面为.最后分别求体积做比值即可.
试题解析:(1)平面⊥平面 ,平面平面,
平面,而四边形为矩形,
.平面
,
(2)取中点,连接,则,且,又四边形为矩形,
,且  四边形为平行四边形,
平面平面  ∥平面
(3)过 ,由题意可得:平面.
所以:.
因为平面

练习册系列答案
相关习题

科目:高中数学 来源: 题型:解答题

如图,在四棱锥中,为正三角形,且平面平面

(1)证明:
(2)求二面角的余弦值.

查看答案和解析>>

科目:高中数学 来源: 题型:解答题

如图,四棱锥的底面为一直角梯形,侧面PAD是等边三角形,其中,平面底面的中点.
 
(1)求证://平面
(2)求证:
(3)求与平面所成角的正弦值。

查看答案和解析>>

科目:高中数学 来源: 题型:解答题

如图,四边形ABCD与四边形都为正方形,,F
为线段的中点,E为线段BC上的动点.

(1)当E为线段BC中点时,求证:平面AEF;
(2)求证:平面AEF平面;
(3)设,写出为何值时MF⊥平面AEF(结论不要求证明).

查看答案和解析>>

科目:高中数学 来源: 题型:解答题

如图,在三棱柱中,侧面为菱形,且的中点.

(1)求证:平面平面
(2)求证:∥平面

查看答案和解析>>

科目:高中数学 来源: 题型:解答题

如图1,在Rt△ABC中,∠ABC=90°,DAC中点,(不同于点),延长AEBCF,将△ABD沿BD折起,得到三棱锥,如图2所示.

(1)若MFC的中点,求证:直线//平面
(2)求证:BD
(3)若平面平面,试判断直线与直线CD能否垂直?并说明理由.

查看答案和解析>>

科目:高中数学 来源: 题型:解答题

如图,已知四棱锥
平面的中点.

(1)求证:∥平面
(2)求证:平面平面
(3)求四棱锥的体积.

查看答案和解析>>

科目:高中数学 来源: 题型:解答题

如图,在四棱锥PABCD中,底面是边长为2的菱形,∠BAD=120°,且PA⊥平面ABCD,PA=2,M、N分别为PB、PD的中点.

(1)证明:MN∥平面ABCD;
(2)过点A作AQ⊥PC,垂足为点Q,求二面角AMNQ的平面角的余弦值.

查看答案和解析>>

科目:高中数学 来源: 题型:解答题

如图,四边形ABEF和ABCD都是直角梯形,∠BAD=∠FAB=90°,BC∥=AD,BE∥=FA,G、H分别为FA、FD的中点.
 
(1)证明:四边形BCHG是平行四边形.
(2)C、D、F、E四点是否共面?为什么?

查看答案和解析>>

同步练习册答案