精英家教网 > 高中数学 > 题目详情
对于函数f(x)=-3x2+k,当实数k属于下列选项中的哪一个区间时,才能确保一定存在实数对a,b(a<b<0),使得当函数f(x)的定义域为[a,b]时,其值域也恰好是[a,b](  )
分析:函数f(x)=-3x2+k的图象开口向下,对称轴为y轴,若存在实数对a,b(a<b<0),此时函数单调递增,由题意得-3a2+k=a,-3b2+k=b,所以方程3t2+t-k=0有两个不等的负根a,b,进而可求实数k的区间.
解答:解:由题意,函数f(x)=32x2+k的图象开口向下,对称轴为y轴,函数图象在y轴右侧递减
若存在实数对a,b(a<b<0),使得当函数f(x)的定义域为[a,b]时,其值域也恰好是[a,b],
则-3a2+k=a,-3b2+k=b.
∴方程3t2+t-k=0有两个不等的负根a,b
△=1+12k>0
a+b=-
1
3
<0
ab=-
k
3
>0
,∴
k>-
1
12
k<0
,即-
1
12
<k<0

故选D.
点评:本题主要考查函数的定义域与值域的关系,考查方程根的讨论,解题的关键是将问题转化为方程3t2+t-k=0有两个不等的负根a,b,利用根与系数之间的关系确定条件即可.
练习册系列答案
相关习题

科目:高中数学 来源: 题型:

对于函数f(x)定义域中任意的x1,x2(x1≠x2),有如下结论:
①f(x1+x2)=f(x1)f(x2);②f(x1•x2)=f(x1)+f(x2);
③(x1-x2)[f(x1)-f(x2)]<0;④f(
x1+x2
2
)<
f(x1)+f(x2)
2

当f(x)=2-x时,上述结论中正确结论的序号是
 
写出全部正确结论的序号)

查看答案和解析>>

科目:高中数学 来源: 题型:

对于函数f(x),定义域为D,若存在x0∈D使f(x0)=x0,则称(x0,x0)为f(x)的图象上的不动点. 由此,函数f(x)=
9x-5x+3
的图象上不动点的坐标为
 

查看答案和解析>>

科目:高中数学 来源: 题型:

对于函数f(x)定义域中任意的x1,x2(x1≠x2)有如下结论:
①f(x1+x2)=f(x1)f(x2)②f(x1)f(x2)=f(x1)+f(x2)③
f(x1)-f(x2)
x1-x2
<0

f(
x1+x2
2
)<
f(x1)+f(x2)
2
,当f(x)=log
1
2
x
时,上述结论中正确的序号是
③④
③④
(写出全部正确结论的序号)

查看答案和解析>>

科目:高中数学 来源: 题型:

对于函数f(x),若存在x0∈R,使f(x0)=x0成立,则称x0为函数f(x)的不动点,已知f(x)=ax2+(b+1)x+(b-1)(a≠0)
(1)当a=1,b=-2求函数f(x)的不动点;
(2)若对任意实数b,函数f(x)恒有两个相异不动点,求a的取值范围;
(3)在(2)的条件下,令g(x)=
1
x+2
+loga 
1+x
1-x
,解关于x的不等式g[x(x-
1
2
)]<
1
2

查看答案和解析>>

科目:高中数学 来源: 题型:

对于函数f(x)=x3cos3(x+
π
6
),下列说法正确的是(  )

查看答案和解析>>

同步练习册答案