精英家教网 > 高中数学 > 题目详情
已知f(x)=
1
2x+1
+m
是奇函数,则f(-1)=
1
6
1
6
分析:先由奇函数的性质求出m值,再求f(-1)即可.
解答:解:因为f(x)为定义域为R的奇函数,所以f(0)=0,即
1
20+1
+m=0,
解得m=-
1
2

所以f(-1)=
1
2-1+1
-
1
2
=
1
6

故答案为:
1
6
点评:本题考查奇函数的性质及函数求值问题,属基础题.
练习册系列答案
相关习题

科目:高中数学 来源: 题型:

已知f(x)=
1
2
x+1
 (x≤0)
-(x-1)2(x>0)

(1)求函数的最大值;  
(2)求使f(x)≥-1成立的x的取值范围.

查看答案和解析>>

科目:高中数学 来源: 题型:

已知f(x)=
1
2x+
2
,分别求f(0)+f(1),f(-1)+f(2),f(-2)+f(3),然后归纳猜想一般性结论,并证明你的结论.

查看答案和解析>>

科目:高中数学 来源: 题型:

(2012•武汉模拟)已知f(x)=
1
2x+1
,则f(f(0))
=(  )

查看答案和解析>>

科目:高中数学 来源:不详 题型:解答题

已知f(x)=
1
2x+
2
,分别求f(0)+f(1),f(-1)+f(2),f(-2)+f(3),然后归纳猜想一般性结论,并证明你的结论.

查看答案和解析>>

同步练习册答案