精英家教网 > 高中数学 > 题目详情

【题目】如图,在直三棱柱ABCA1B1C1中,AB=BC=BB1DAC上的点,B1C∥平面A1BD

(1)求证:BD⊥平面

(2)若,求三棱锥A-BCB1的体积.

【答案】(1)见解析;(2)

【解析】试题分析】(1)运用线面垂直判定定理推证;(2)先求三棱锥的高与底面面积再运用三棱锥的体积公式求解:

(1)连结ED

∵平面AB1C∩平面A1BD=EDB1C∥平面A1BD

B1CED

EAB1中点,∴DAC中点,

AB=BC, ∴BDAC

【法一】:由A1A⊥平面ABC 平面ABC,得A1ABD②,

由①②及A1AAC是平面内的两条相交直线,得BD⊥平面.

【法二】:由A1A⊥平面ABCA1A平面

∴平面⊥平面ABC ,又平面 平面ABC=AC,得BD⊥平面.

(2)由BC=BB1=1,

由(1)知,又,

,∴

练习册系列答案
相关习题

科目:高中数学 来源: 题型:

【题目】如图所示,在四边形ABCD中,AB⊥DA,CE= ,∠ADC= ;E为AD边上一点,DE=1,EA=2,∠BEC=

(1)求sin∠CED的值;
(2)求BE的长.

查看答案和解析>>

科目:高中数学 来源: 题型:

【题目】如图,在三棱柱中, 的中点, .

(1)求证: 平面

(2)当时,求直线与平面所成角的正弦值.

查看答案和解析>>

科目:高中数学 来源: 题型:

【题目】“累积净化量”是空气净化器质量的一个重要衡量指标,它是指空气净化从开始使用到净化效率为50%时对颗粒物的累积净化量,以克表示,根据《空气净化器》国家标准,对空气净化器的累计净化量有如下等级划分:

累积净化量(克)

12以上

等级

为了了解一批空气净化器(共5000台)的质量,随机抽取台机器作为样本进行估计,已知这台机器的累积净化量都分布在区间中,按照均匀分组,其中累积净化量在的所有数据有:4.5,4.6,5.2,5.3,5.7和5.9,并绘制了频率分布直方图,如图所示:

(1)求的值及频率分布直方图中的值;

(2)以样本估计总体,试估计这批空气净化器(共5000台)中等级为的空气净化器有多少台?

(3)从累积净化量在的样本中随机抽取2台,求恰好有1台等级为的概率.

查看答案和解析>>

科目:高中数学 来源: 题型:

【题目】函数f(x)=x3+2x2﹣4x+5在[﹣4,1]上的最大值和最小值分别是(
A.13,
B.4,﹣11
C.13,﹣11
D.13,最小值不确定

查看答案和解析>>

科目:高中数学 来源: 题型:

【题目】已知关于的方程的两个根分别为其中 ,则的取值范围是(

A. B. C. D.

查看答案和解析>>

科目:高中数学 来源: 题型:

【题目】在某海滨城市附近海面有一台风,据监测,当前台风中心位于城市O(如图)的东偏南方向的海面P处,且,并以的速度向西偏北方向移动,台风侵袭的范围为圆形区域,当前半径为,并以的速度不断增大,问几小时后该城市开始受到台风的侵袭?

查看答案和解析>>

科目:高中数学 来源: 题型:

【题目】已知△OAB的顶点坐标为O(0,0),A(2,9),B(6,﹣3),点P的横坐标为14,且 ,点Q是边AB上一点,且 =0.
(1)求实数λ的值与点P的坐标;
(2)求点Q的坐标.

查看答案和解析>>

科目:高中数学 来源: 题型:

【题目】如图,在四棱锥P﹣ABCD中,PD⊥平面ABCD,四边形ABCD是菱形,AC=6,BD=8,E是PB上任意一点,△AEC面积的最小值是3.
(Ⅰ)求证:AC⊥DE;
(Ⅱ)求四棱锥P﹣ABCD的体积.

查看答案和解析>>

同步练习册答案