精英家教网 > 高中数学 > 题目详情
在平面直角坐标系中,从下列五个点:A(0,0),B(2,0),C(1,1),D(0,2),E(2,2)中任取三个,这三点能构成三角形的概率是(  )
A、
2
5
B、
3
5
C、
4
5
D、1
考点:古典概型及其概率计算公式
专题:概率与统计
分析:本题为古典概型,利用列举法解答即可,注意构成三角形的条件是三点不共线.
解答: 解:从5个点中取3个点,列举得ABC,ABD,ABE,ACD,ACE,ADE,BCD,BCE,BDE,CDE共有10个基本事件,而其中ACE,BCD两种情况三点共线,其余8个均符合题意,故能构成三角形的概率为
8
10
=
4
5
.、
故选:C.
点评:本题考查古典概型.古典概型需要把握基本事件,要等可能和可列举.
练习册系列答案
相关习题

科目:高中数学 来源: 题型:

已知向量
a
=(1,2),
b
=(x,1),u=
a
+2
b
,v=2
a
-
b
,且u∥v,则实数x的值是
 

查看答案和解析>>

科目:高中数学 来源: 题型:

圆x2-2x+y2=0的圆心C到抛物线y2=4x的准线l的距离为
 

查看答案和解析>>

科目:高中数学 来源: 题型:

执行如图所示的程序框图,如果输入a=1,b=2,则输出的a的值为(  )
A、16B、12C、8D、7

查看答案和解析>>

科目:高中数学 来源: 题型:

如果x>y>0,则
xyyx
xxyy
=(  )
A、(x-y)
y
x
B、(x-y)
x
y
C、(
x
y
)y-x
D、(
x
y
)x-y

查看答案和解析>>

科目:高中数学 来源: 题型:

定义在R上的函数f(x),恒有|f(-x)|=|f(x)|,则函数f(x)为(  )
A、奇函数
B、偶函数
C、奇函数或偶函数
D、可能既不是奇函数,也不是偶函数

查看答案和解析>>

科目:高中数学 来源: 题型:

如图1,椭圆E:
x2
a2
+
y2
b2
=1(a>b>0)的左、右焦点分别为F1F2,左、右顶点分别为A1,A2,T(1,
3
2
)为椭圆上一点,且TF2垂直于x轴.

(Ⅰ)求椭圆E的方程;
(Ⅱ)给出命题:“已知P是椭圆E上异于A1,A2的一点,直线 A1P,A2P分别交直线l:x=t(t为常数)于不同两点M,N,点Q在直线l上.若直线PQ与椭圆E有且只有一个公共点P,则Q为线段MN的中点”,写出此命题的逆命题,判断你所写出的命题的真假,并加以证明;
(Ⅲ)试研究(Ⅱ)的结论,根据你的研究心得,在图2中作出与该双曲线有且只有一个公共点S的直线m,并写出作图步骤.注意:所作的直线不能与双曲线的渐近线平行.

查看答案和解析>>

科目:高中数学 来源: 题型:

解不等式
1
x+4
+
1
x+7
1
x+5
+
1
x+6

查看答案和解析>>

科目:高中数学 来源: 题型:

已知椭圆
x2
a2
+
y2
b2
=1(a>b>0),过点A(-a,0),B(0,b)的直线的倾斜角为
π
6
,原点到该直线的距离为
2
2

(1)求椭圆的方程;
(2)是否存在实数k,直线y=kx+2交椭圆于Q,P两点,以PQ为直径的圆过点D(-1,0),若存在,求出k的值;若不存在,请说明理由.

查看答案和解析>>

同步练习册答案