精英家教网 > 高中数学 > 题目详情
(本小题满分12分) 如图,AB是⊙O的直径,PA垂直于⊙O所在的平面,C是圆周上不同于A,B的一点.
(1)证明:平面PAC⊥平面PBC;
(2)若,∠ABC=30°,求二面角A—PB—C的大小.
(1)平面PAC⊥平面PBC
(2)二面角A—PB—C的大小为60°
(1)证明:∵PA垂直于⊙O所在的平面,BC在该平面内,所以PA⊥BC。
∵C是圆周上不同于A,B的一点,AB是⊙O的直径,所以∠BCA是直角,即BC⊥AC。
又因为PA与AC是平面PAC内的两条相交直线,所以BC⊥平面PAC。
又困为BC在平面PBC内,所以平面PAC⊥平面PBC    …………………5分
(2)作AD⊥PB于D点,AE⊥PC于E点,连DE。
由(1)知平面PAC⊥平面PBC,所以AE⊥平面PBC
而PB在平面PBC内,所以AE⊥PB
即有PB⊥AD(所作)PB⊥AE,又AE与AD是平面ADE内的两条相交直线,
所以PB⊥平面ADE,所以∠ADE是二面角A—PB—C的平面角。…………………………9分
设AB=2r,在Rt△ABC中,∠ABC=30°,所以AC=r
由条件知PA=
在Rt△PAC中,AE=
在Rt△PAB中,AD=
在Rt△AED中,sin∠ADE=,所以∠ADE=60°
故二面角A—PB—C的大小为60°………………………………………12分
练习册系列答案
相关习题

科目:高中数学 来源:不详 题型:解答题

(本小题满分12分)如图,在底面为直角梯形的四棱锥,BC=6.

(Ⅰ)求证:
(Ⅱ)求二面角的大小.

查看答案和解析>>

科目:高中数学 来源:不详 题型:解答题

(本小题满分12分)

如图,在四棱锥中,底面的中点.
(Ⅰ)证明
(Ⅱ)证明平面
(Ⅲ)求二面角的大小.

查看答案和解析>>

科目:高中数学 来源:不详 题型:解答题

(本小题满分15分)如图,斜三棱柱ABC—A1B1C1中,A1C1⊥BC1,AB⊥AC,AB=3,AC=2,侧棱与底面成60°角.
(1)求证:AC⊥面ABC1
(2)求证:C1点在平面ABC上的射影H在直线AB上;
(3)求此三棱柱体积的最小值.

查看答案和解析>>

科目:高中数学 来源:不详 题型:单选题

已知直线m⊥平面,直线平面,则下列命题正确的是               (   )
A.若αβ,则mnB.若αβ,则mn
C.若mn,则αβD.若nα,则αβ

查看答案和解析>>

科目:高中数学 来源:不详 题型:填空题

设地球的半径为R,在北纬45°圈上有甲、乙两地,它们分别在东经50°与东经140°圈上,则甲、乙两地的球面距离是                  

查看答案和解析>>

科目:高中数学 来源:不详 题型:单选题

在空间四边形ABCD的各边ABBCCDDA上依次取点EFGH,若EHFG所在直线相交于点P,则
A.点P必在直线ACB.点P必在直线BD
C.点P必在平面DBCD.点P必在平面ABC

查看答案和解析>>

科目:高中数学 来源:不详 题型:单选题

一内侧边长为的正方体容器被水充满,首先把半径为的球放入其中,再放入一个能被水完全淹没的小球,若想使溢出的水量最大,这个小球的半径为( )
A.B.C.D.

查看答案和解析>>

科目:高中数学 来源:不详 题型:填空题

如图,三棱柱ABC—A1B1C1的底面是正三角形且侧棱垂直于底面,
三棱柱ABC—A1B1C1的每条棱长均为4,E、F分别是BC,A1C1
的中点,则EF的长等于         

查看答案和解析>>

同步练习册答案