精英家教网 > 高中数学 > 题目详情
已知向量
a
=(sinx,2),
b
=(cosx,-1)

(1)当
a
b
时,求sin2x-sin2x的值;
(2)求f(x)=(
a
+
b
)•
a
[-
π
2
,0]
上的值域.
分析:(1)利用向量共线的充要条件列出方程,利用三角函数的商数关系求出tanx,利用三角函数的平方关系和二倍角公式求出值.
(2)利用向量数量积的运算律求出函数f(x),利用三角函数中的公式:asinx+bcosx=
a2+b2
sin(x+θ)
化简函数,利用三角函数的有界性求出值域.
解答:解:(1)∵
a
b

∴2cosx+sinx=0,∴tanx=-2.
sin2x-sin2x=
sin2x-2sinxcosx
sin2x+cos2x
=
tan2x-2tanx
1+tan2x
=
8
5

(2)∵
a
+
b
=(sinx+cosx,1)

f(x)=(
a
+
b
)•
a
=(sinx+cosx)•sinx+2

=
1
2
(sin2x-cos2x)+
5
2
=
2
2
sin(2x-
π
4
)+
5
2

-
π
2
≤x≤0

-
4
≤2x-
π
4
≤-
π
4

-1≤sin(2x-
π
4
)≤
2
2

5-
2
2
≤f(x)≤3
点评:本题考查向量共线的充要条件、向量数量积的运算律、三角函数的平方关系和商数关系、三角函数的有界性.
练习册系列答案
相关习题

科目:高中数学 来源: 题型:

已知向量
a
=(sinθ,
3
)
b
=(1,cosθ)
θ∈(-
π
2
π
2
)

(1)若
a
b
,求θ;
(2)求|
a
+
b
|
的最大值.

查看答案和解析>>

科目:高中数学 来源: 题型:

已知向量
a
=(sin(x-
π
4
),-1),
b
=(
2
,2)
f(x)=
a
b
+2

(1)求f(x)的表达式.
(2)用“五点作图法”画出函数f(x)在一个周期上的图象.
(3)写出f(x)在[-π,π]上的单调递减区间.
(4)设关于x的方程f(x)=m在x∈[-π,π]上的根为x1,x2m∈(1,
2
)
,求x1+x2的值.

查看答案和解析>>

科目:高中数学 来源: 题型:

已知向量
a
=(sinθ,-2),
b
=(1,cosθ)
,且
a
b
,则sin2θ+cos2θ的值为(  )

查看答案和解析>>

科目:高中数学 来源: 题型:

已知向量
a
=(sinθ,1),
b
=(1,cosθ),θ∈(-
π
2
π
2
)

(1)若
a
b
,求θ的值;
(2)若已知sinθ+cosθ=
2
sin(θ+
π
4
)
,利用此结论求|
a
+
b
|的最大值.

查看答案和解析>>

科目:高中数学 来源: 题型:

已知向量
a
=(sin(x-
π
4
),-1)
b
=(2,2)
f(x)=
a
b
+2

①用“五点法”作出函数y=f(x)在长度为一个周期的闭区间的图象.
②求函数f(x)的最小正周期和单调增区间;
③求函数f(x)的最大值,并求出取得最大值时自变量x的取值集合
④函数f(x)的图象可以由函数y=sin2x(x∈R)的图象经过怎样的变换得到?
⑤当x∈[0,π],求函数y=2sin(x-
π
4
)
的值域
解:(1)列表
(2)作图
精英家教网

查看答案和解析>>

同步练习册答案