解:当a=1时,f(x)=
,f(2)=3;
f′(x)=3x2﹣3x,f′(2)=6.
所以曲线y=f(x)在点(2,f(2))处的切线方程为
y﹣3=6(x﹣2),即y=6x﹣9;
(Ⅱ)解:f′(x)=3ax2﹣3x=3x(ax﹣1).
令f′(x)=0,解得x=0或x=
.
以下分两种情况讨论:
(1)若0<a≤2,则
;
当x变化时,f′(x),f(x)的变化情况如下表
科目:高中数学 来源: 题型:
| π |
| 4 |
| π |
| 6 |
查看答案和解析>>
科目:高中数学 来源: 题型:
查看答案和解析>>
科目:高中数学 来源: 题型:
| 1 |
| x |
| m |
| 2 |
查看答案和解析>>
科目:高中数学 来源: 题型:
| 1 |
| f(n) |
A、
| ||
B、
| ||
C、
| ||
D、
|
查看答案和解析>>
科目:高中数学 来源: 题型:
查看答案和解析>>
湖北省互联网违法和不良信息举报平台 | 网上有害信息举报专区 | 电信诈骗举报专区 | 涉历史虚无主义有害信息举报专区 | 涉企侵权举报专区
违法和不良信息举报电话:027-86699610 举报邮箱:58377363@163.com