精英家教网 > 高中数学 > 题目详情
已知数列{an}中,a1=6,an+1=an+1,数列{bn},点(n,bn)在过点A(0,1)的直线l上,若l上有两点B、C,向量
BC
=(1,2).
(1)求数列{an},{bn}的通项公式;
(2)设cn=n•2bn,试求数列{cn}的前n项和.
(1)在数列{an}中,∵an+1=an+1,∴an+1-an=1
则数列{an}是公差为1的等差数列,又a1=6,
∴an=a1+(n-1)d=6+1×(n-1)=n+5.
设l上任意一点P(x,y),∵点A(0,1)在直线l上,则
AP
=(x,y-1),
由已知可得
AP
BC
,又向量
BC
=(1,2),
∴2x-(y-1)=0,∴直线l的方程为y=2x+1,
又直线l过点(n,bn),∴bn=2n+1;       
(2)由cn=n•2bn=n•22n+1
∴Sn=C1+C2+…+cn
=1×23+2×25+3×27+…+n•22n+1
4Sn=1×25+2×27+…+(n-1)•22n+1+n•22n+3
①-②得:-3Sn=23+25+27+…+22n+1-n•22n+3
=
8(1-4n)
1-4
-n•22n+3
=
8(1-4n)
-3
-n•22n+3

Sn=
8+(3n-1)22n+3
9
练习册系列答案
相关习题

科目:高中数学 来源: 题型:

已知数列{an}中,a1=1,an+1-an=
1
3n+1
(n∈N*)
,则
lim
n→∞
an
=
 

查看答案和解析>>

科目:高中数学 来源: 题型:

已知数列{an}中,a1=1,an+1=
an
1+2an
,则{an}的通项公式an=
1
2n-1
1
2n-1

查看答案和解析>>

科目:高中数学 来源: 题型:

已知数列{an}中,a1=1,a1+2a2+3a3+…+nan=
n+1
2
an+1(n∈N*)

(1)求数列{an}的通项公式;
(2)求数列{
2n
an
}
的前n项和Tn

查看答案和解析>>

科目:高中数学 来源: 题型:

已知数列{an}中,a1=
1
2
Sn
为数列的前n项和,且Sn
1
an
的一个等比中项为n(n∈N*
),则
lim
n→∞
Sn
=
1
1

查看答案和解析>>

科目:高中数学 来源: 题型:

已知数列{an}中,a1=1,2nan+1=(n+1)an,则数列{an}的通项公式为(  )
A、
n
2n
B、
n
2n-1
C、
n
2n-1
D、
n+1
2n

查看答案和解析>>

同步练习册答案