精英家教网 > 高中数学 > 题目详情

在如图所示的四面体ABCD中,AB、BC、CD两两互相垂直,且BC=CD=1。

(1)求证:平面ACD⊥平面ABC;

(2)求二面角C-AB-D的大小。

(2)450


解析:

(1)证明:∵CD⊥AB,CD⊥BC,∴CD⊥平面ABC,

又∵CD平面ACD,

∴平面ACD⊥平面ABC。

       (2)∵AB⊥BC,AB⊥CD,∴AB⊥平面BCD,

∴AB⊥BD,

            ∴∠CBD是二面角C-AB-D的平面角,

            ∵在Rt△BCD中,BC=CD,∴∠CBD=450

            ∴二面角C-AB-D的大小为450

练习册系列答案
相关习题

科目:高中数学 来源: 题型:

精英家教网如图所示,在边长为4的正方形纸片ABCD中,AC与BD相交于O,剪去△AOB,将剩余部分沿OC、OD折叠,使OA、OB重合,则以A、(B)、C、D、O为顶点的四面体的体积为
 

查看答案和解析>>

科目:高中数学 来源: 题型:

如图所示,在四面体P-ABC中,PA⊥BC,PB⊥AC,BC=2,PB=PC,P-BC-A是60°的二面角.
(1)求证:PC⊥AB;
(2)求四面体P-ABC的体积.

查看答案和解析>>

科目:高中数学 来源: 题型:

精英家教网菱形ABCD的边长为
2
3
3
,∠ABC=60°,沿对角线AC折成如图所示的四面体,M为AC的中点,∠BMD=60°,P在线段DM上,记DP=x,PA+PB=y,则函数y=f(x)的图象大致为(  )
A、精英家教网
B、精英家教网
C、精英家教网
D、精英家教网

查看答案和解析>>

科目:高中数学 来源: 题型:

如图所示,四边形ABCD中,AD∥BC,AD=AB,∠BCD=45°,∠BAD=90°,将△ABD沿BD折起,使平面ABD⊥平面BCD,构成四面体A-BCD,则在四面体A-BCD中,下列说法正确的是(  )

A.平面ABD⊥平面ABC 

B.平面ADC⊥平面BDC

C.平面ABC⊥平面BDC 

D.平面ADC⊥平面ABD

查看答案和解析>>

科目:高中数学 来源:2010年高考试题(上海秋季)解析版(理) 题型:填空题

 [番茄花园1] 如图所示,在边长为4的正方形纸片ABCD中,AC与BD相交于O,剪去,将剩余部分沿OC、OD折叠,使OA、OB重合,则以A、(B)、C、D、O为顶点的四面体的体积为   

 


 [番茄花园1]12.

查看答案和解析>>

同步练习册答案