精英家教网 > 高中数学 > 题目详情
19.如图,四棱锥P-ABCD中,PD⊥平面PAB,AD∥BC,BC=CD=$\frac{1}{2}$AD,E,F分别为线段AD,PD的中点.
(Ⅰ)求证:CE∥平面PAB;
(Ⅱ)求证:PD⊥平面CEF;
(Ⅲ)写出三棱锥D-CEF与三棱锥P-ABD的体积之比.(结论不要求证明)

分析 (Ⅰ)推导出四边形ABCE为平行四边形,从而CE∥AB,由此能证明CE∥平面PAB.
(Ⅱ)推导出EF∥PA,则PD⊥AB,PD⊥PA,从而PD⊥EF,由CE∥AB,得PD⊥CE,由此能证明PD⊥平面CEF.
(Ⅲ)由三棱锥的体积公式能求出三棱锥D-CEF与三棱锥P-ABD的体积之比.

解答 证明:(Ⅰ)∵BC∥AD,BC=$\frac{1}{2}AD$,E为AD中点,
∴AE∥BC,且AE=BC,
∴四边形ABCE为平行四边形,
∴CE∥AB,
又AB?平面PAB,CE?平面PAB,
∴CE∥平面PAB.
(Ⅱ)∵E、F分别为AD、PD的中点,∴EF∥PA,
又∵PD⊥平面PAB,PA,AB?平面PAB,
∴PD⊥AB,PD⊥PA,∴PD⊥EF,
又CE∥AB,∴PD⊥CE,
∵EF∩CE=E,
∴PD⊥平面CEF.
解:(Ⅲ)三棱锥D-CEF与三棱锥P-ABD的体积之比为:
$\frac{{V}_{D-CEF}}{{V}_{P-ABD}}$=$\frac{1}{4}$.

点评 本题考查线面平行、线面垂直的证明,考查两个三棱锥的体积之比的求法,考查空间中线线、线面、面面间的位置关系等基础知识,考查推理论证能力、运算求解能力,考查化归与转化思想、数形结合思想,是中档题.

练习册系列答案
相关习题

科目:高中数学 来源: 题型:填空题

9.某多面体的三视图如图所示,则该多面体外接球的体积为$\frac{{41\sqrt{41}}}{48}π$.

查看答案和解析>>

科目:高中数学 来源: 题型:填空题

10.在△ABC中,a=4,b=$\sqrt{7},c=\sqrt{3}$,则角B=$\frac{π}{6}$.

查看答案和解析>>

科目:高中数学 来源: 题型:填空题

7.已知函数f (x)的定义域为R.当x<0时,f(x)=ln(-x)+x;当-e≤x≤e时,f(-x)=-f(x);当x>1时,f(x+2)=f(x),则f(8)=2-ln2.

查看答案和解析>>

科目:高中数学 来源: 题型:填空题

14.在△ABC中,角A,B,C对应的边长分别是a,b,c,且$\sqrt{3}asinB=bcosA$,则角A的大小为 $\frac{π}{6}$.

查看答案和解析>>

科目:高中数学 来源: 题型:填空题

4.一个袋中装有1红,2白和2黑共5个小球,这5个小球除颜色外其它都相同,现从袋中任取2个球,则至少取到1个白球的概率为$\frac{7}{10}$.

查看答案和解析>>

科目:高中数学 来源: 题型:选择题

11.已知三棱锥P-ABC的各顶点都在同一球的面上,且PA⊥平面ABC,若球O的体积为$\frac{20\sqrt{5}π}{3}$(球的体积公式:V=$\frac{4π}{3}$R3,其中R为球的半径),AB=2,AC=1,∠BAC=60°,则PA为(  )
A.4B.$\sqrt{5}$C.2D.$\sqrt{3}$

查看答案和解析>>

科目:高中数学 来源: 题型:解答题

8.将圆$\left\{\begin{array}{l}x=2cosθ\\ y=2sinθ\end{array}\right.(θ$为参数)上的每一点的横坐标保持不变,纵坐标变为原来的$\frac{1}{2}$倍,得到曲线C.
(1)求出C的普通方程;
(2)设直线l:x+2y-2=0与C的交点为P1,P2,以坐标原点为极点,x轴正半轴为极轴建立极坐标系,
求过线段P1P2的中点且与l垂直的直线的极坐标方程.

查看答案和解析>>

科目:高中数学 来源: 题型:解答题

9.在平面直角坐标系xOy中,直线l的参数方程为$\left\{{\begin{array}{l}{x=\frac{{\sqrt{2}}}{2}t}\\{y=\frac{{\sqrt{2}}}{2}t}\end{array}}\right.$(t为参数),圆C的方程为x2+y2-4x-2y+4=0.以O为极点,x轴正半轴为极轴建立极坐标系.
(1)求l的普通方程与C的极坐标方程;
(2)已知l与C交于P,Q,求|PQ|.

查看答案和解析>>

同步练习册答案