精英家教网 > 高中数学 > 题目详情
10.在△ABC中,a=4,b=$\sqrt{7},c=\sqrt{3}$,则角B=$\frac{π}{6}$.

分析 由已知利用余弦定理可求cosB,结合B的范围即可得解B的值.

解答 解:∵a=4,b=$\sqrt{7},c=\sqrt{3}$,
∴cosB=$\frac{{a}^{2}+{c}^{2}-{b}^{2}}{2ac}$=$\frac{16+3-7}{2×4×\sqrt{3}}$=$\frac{\sqrt{3}}{2}$,
∵B∈(0,π),
∴B=$\frac{π}{6}$.
故答案为:$\frac{π}{6}$.

点评 本题主要考查了余弦定理在解三角形中的应用,属于基础题.

练习册系列答案
相关习题

科目:高中数学 来源: 题型:解答题

20.如图,在四棱锥P-ABCD中,底面ABCD是平行四边形,∠BCD=135°,侧面PAB⊥底面ABCD,∠BAP=90°,AB=AC=PA=2,E,F分别为BC,AD的中点,点M在线段PD上.
(Ⅰ)求证:EF⊥平面PAC;
(Ⅱ)当二面角M-EF-D的大小为60°时,求$\frac{PM}{PD}$的值.

查看答案和解析>>

科目:高中数学 来源: 题型:解答题

1.已知函数f(x)=(x+1)21n(x+1)-x.
(1)求函数f(x)的单调区间;
(2)设当x≥0时,f(x)≥ax2,求实数a的取值范围.

查看答案和解析>>

科目:高中数学 来源: 题型:解答题

18.某市对大学生毕业后自主创业人员给予小额贷款补贴,贷款期限分为6个月、12个月、18个月、24个月、36个月五种,对于这五种期限的贷款政府分别补贴200元、300元、300元、400元、400元,从2016年享受此项政策的自主创业人员中抽取了100人进行调查统计,选取贷款期限的频数如表:
 贷款期限  6个月  12个月  18个月  24个月  36个月
 频数 20 40 20 10 10
以上表中各种贷款期限的频数作为2017年自主创业人员选择各种贷款期限的概率.
(Ⅰ)某大学2017年毕业生中共有3人准备申报此项贷款,计算其中恰有两人选择贷款期限为12个月的概率;
(Ⅱ)设给某享受此项政策的自主创业人员补贴为X元,写出X的分布列;该市政府要做预算,若预计2017年全市有600人申报此项贷款,则估计2017年该市共要补贴多少万元.

查看答案和解析>>

科目:高中数学 来源: 题型:解答题

5.在直角坐标系xOy中,曲线C1的方程为$\frac{x^2}{9}+{y^2}=1$.以坐标原点为极点,以x轴的正半轴为极轴,建立极坐标系,曲线C2的极坐标方程为ρ2-8ρsinθ+15=0.
(Ⅰ)写出C1的参数方程和C2的直角坐标方程;
(Ⅱ)设点P在C1上,点Q在C2上,求|PQ|的最大值.

查看答案和解析>>

科目:高中数学 来源: 题型:选择题

15.某翻译公司为提升员工业务能力,为员工开设了英语、法语、西班牙语和德语四个语种的培训过程,要求每名员工参加且只参加其中两种.无论如何安排,都有至少5名员工参加的培训完全相同.问该公司至少有多少名员工?(  )
A.17B.21C.25D.29

查看答案和解析>>

科目:高中数学 来源: 题型:选择题

2.下列函数中,既是偶函数又是(0,+∞)上的增函数的是(  )
A.y=-x3B.y=2|x|C.y=${x}^{\frac{1}{2}}$D.y=log3(-x)

查看答案和解析>>

科目:高中数学 来源: 题型:解答题

19.如图,四棱锥P-ABCD中,PD⊥平面PAB,AD∥BC,BC=CD=$\frac{1}{2}$AD,E,F分别为线段AD,PD的中点.
(Ⅰ)求证:CE∥平面PAB;
(Ⅱ)求证:PD⊥平面CEF;
(Ⅲ)写出三棱锥D-CEF与三棱锥P-ABD的体积之比.(结论不要求证明)

查看答案和解析>>

科目:高中数学 来源: 题型:解答题

20.已知二阶矩阵M有特征值λ=8及对应的一个特征向量$\overrightarrow{{e}_{1}}$=$[\begin{array}{l}{1}\\{1}\end{array}]$,并且矩阵M将点(-1,3)变换为(4,16),求矩阵M.

查看答案和解析>>

同步练习册答案