分析 (Ⅰ)推导出EF⊥AC,PA⊥EF,由此能证明EF⊥平面PAC.
(Ⅱ)推导出AP、AB、AC两两垂直,以A 为原点,以AB、AC、AP为x,y,z轴,建立空间直角坐标系,利用向量法能求出$\frac{PM}{PD}$的值.
解答 证明:(Ⅰ)在平行四边形ABCD中,∵AB=AC,∠BCD=135°,![]()
∴AB⊥AC,E、F分别是BC、AD的中点,∴EF∥AB,
∴EF⊥AC,
∵侧面PAB⊥底面ABCD,且∠BAP=90°,∴PA⊥底面ABCD,
又∵EF?底面ABCD,∴PA⊥EF,
又∵PA∩AC=A,PA?平面PAC,PC?平面PAC,
∴EF⊥平面PAC.
解:(Ⅱ)∵侧面PAB⊥底面ABCD,且交线为AB,PA⊥AB,
∴PA⊥底面ABCD,AB⊥AC,
∴AP、AB、AC两两垂直,以A 为原点,以AB、AC、AP为x,y,z轴,建立空间直角坐标系,
则A(0,0,0),B(2,0,0),C(0,2,0),D(-2,2,0),E(1,1,0),F(-1,1,0),P(0,0,2),
令$\overrightarrow{PM}$=$λ\overrightarrow{PD}$=(-2λ,2λ,-2λ),λ∈(0,1),
又$\overrightarrow{EP}$=(-1,-1,2),∴$\overrightarrow{EM}$=$\overrightarrow{EP}+\overrightarrow{PM}$=(-1-2λ,2λ,-2λ),λ∈(0,1),
设平面EFM的法向量$\overrightarrow{m}$=(x,y,z),
又$\overrightarrow{FE}$=(2,0,0),∴$\left\{\begin{array}{l}{\overrightarrow{FE}•\overrightarrow{m}=2x=0}\\{\overrightarrow{EM}•\overrightarrow{m}=(-1-2λ)x+(-1+2λ)y+(2-2λ)z=0}\end{array}\right.$,
取y=2-2λ,得$\overrightarrow{m}$=(0,2-2λ,1-2λ),
平面EFD的法向量$\overrightarrow{n}$=(0,0,1),
∴|cos<$\overrightarrow{m},\overrightarrow{n}$>|=$\frac{|1-2λ|}{\sqrt{(2-2λ)^{2}+(1-2λ)^{2}}}$=$\frac{1}{2}$,
解得$λ=\frac{1+\sqrt{3}}{4}$或$λ=\frac{1-\sqrt{3}}{4}$(舍),
∴$\frac{PM}{PD}$=$\frac{1+\sqrt{3}}{4}$.
点评 本题考查线面垂直的证明,考查两线段比值的求法,考查空间中线线、线面、面面间的位置关系等基础知识,考查推理论证能力、运算求解能力,考查化归与转化思想、数形结合思想,是中档题.
科目:高中数学 来源: 题型:填空题
查看答案和解析>>
科目:高中数学 来源: 题型:选择题
| A. | (0,$\frac{π}{2}$) | B. | (-$\frac{π}{4}$,$\frac{π}{4}$) | C. | (-$\frac{π}{2}$,-$\frac{π}{4}$) | D. | ($\frac{π}{4}$,$\frac{3π}{4}$) |
查看答案和解析>>
科目:高中数学 来源: 题型:选择题
| A. | $\frac{4}{3}$ | B. | $-\frac{4}{3}$ | C. | $\sqrt{3}$ | D. | 2 |
查看答案和解析>>
科目:高中数学 来源: 题型:解答题
查看答案和解析>>
湖北省互联网违法和不良信息举报平台 | 网上有害信息举报专区 | 电信诈骗举报专区 | 涉历史虚无主义有害信息举报专区 | 涉企侵权举报专区
违法和不良信息举报电话:027-86699610 举报邮箱:58377363@163.com