精英家教网 > 高中数学 > 题目详情
12.已知长方形ABCD如图1中,AD=$\sqrt{3}$,AB=2,E为AB中点,将△ADE沿DE折起到△PDE,所得四棱锥P-BCDE如图2所示.

(Ⅰ)若点M为PC中点,求证:BM∥平面PDE;
(Ⅱ)当平面PDE⊥平面BCDE时,求三棱锥E-PCD的体积.

分析 (Ⅰ)取DP中点F,连结EF、FM,推导出FEBM是平行四边形,从而BM∥EF,由此能证明BM∥平面PDE.
(Ⅱ)过P作PH⊥DE于H,则PH⊥平面EBCD,三棱锥E-PCD的体积VE-PCD=VP-DEC,由此能求出结果.

解答 证明:(Ⅰ)取DP中点F,连结EF、FM,
∵△PDC中,点F、M分别是DP、PC的中点,
∴FM$\underset{∥}{=}$$\frac{1}{2}$DC,又EB$\underset{∥}{=}$$\frac{1}{2}$DC,
∴FM$\underset{∥}{=}$EB,∴FEBM是平行四边形,∴BM∥EF,
又EF?平面PDE,BM?平面PDE,
∴BM∥平面PDE.
解:(Ⅱ)∵平面PDE⊥平面EBCD,且平面PDE∩平面EBCD=DE,
过P作PH⊥DE于H,∴PH⊥平面EBCD,
在Rt△PDE中,过P作PH⊥DE于H,∴PH⊥平面EBCD,
在Rt△PDE中,由题意得PH=$\frac{\sqrt{3}}{2}$,
在Rt△DEC中,DE=$\sqrt{(\sqrt{3})^{2}+{{1}^{2}}_{\;}}$=2,且DE=EC=2,
∴${S}_{△DEC}=\frac{1}{2}×2×2×\frac{\sqrt{3}}{2}$=$\sqrt{3}$,
∴三棱锥E-PCD的体积VE-PCD=VP-DEC=$\frac{1}{3}×{S}_{△DEC}×PH$=$\frac{1}{3}×\sqrt{3}×\frac{\sqrt{3}}{2}$=$\frac{1}{2}$.

点评 本题考查线面平行的证明,考查几何体的体积的求法,考查空间中线线、线面、面面间的位置关系等基础知识,考查推理论证能力、运算求解能力,考查化归与转化思想、数形结合思想、函数与方程思想,是中档题.

练习册系列答案
相关习题

科目:高中数学 来源: 题型:选择题

2.已知椭圆M:$\frac{{x}^{2}}{{a}^{2}}$+y2=1,圆C:x2+y2=6-a2在第一象限有公共点P,设圆C在点P处的切线斜率为k1,椭圆M在点P处的切线斜率为k2,则$\frac{{k}_{1}}{{k}_{2}}$的取值范围为(  )
A.(1,6)B.(1,5)C.(3,6)D.(3,5)

查看答案和解析>>

科目:高中数学 来源: 题型:选择题

3.一个几何体的三视图如图所示,则该几何体的表面积为(  )
A.$\frac{3+\sqrt{3}+2\sqrt{2}}{2}$B.$\frac{1+\sqrt{3}+\sqrt{2}}{2}$C.$\frac{1+\sqrt{3}+2\sqrt{2}}{2}$D.$\frac{3}{2}$+2$\sqrt{2}$

查看答案和解析>>

科目:高中数学 来源: 题型:解答题

20.如图,在四棱锥P-ABCD中,底面ABCD是平行四边形,∠BCD=135°,侧面PAB⊥底面ABCD,∠BAP=90°,AB=AC=PA=2,E,F分别为BC,AD的中点,点M在线段PD上.
(Ⅰ)求证:EF⊥平面PAC;
(Ⅱ)当二面角M-EF-D的大小为60°时,求$\frac{PM}{PD}$的值.

查看答案和解析>>

科目:高中数学 来源: 题型:选择题

7.已知点A(0,2),抛物线C:y2=mx(m>0)的焦点为F,射线FA与抛物线C相交于点M,与其准线相交于点N,若|FM|:|MN|=1:2,则△OFN的面积为(  )
A.$8\sqrt{3}$B.$4\sqrt{3}$C.$\frac{8\sqrt{3}}{3}$D.$\frac{4\sqrt{3}}{3}$

查看答案和解析>>

科目:高中数学 来源: 题型:填空题

17.设x1、x2、x3、x4为自然数1、2、3、4的一个全排列,且满足|x1-1|+|x2-2|+|x3-3|+|x4-4|=6,则这样的排列有9个.

查看答案和解析>>

科目:高中数学 来源: 题型:填空题

4.若函数y=2x3+1与y=3x2-b的图象在一个公共点处的切线相同,则实数b=0或-1.

查看答案和解析>>

科目:高中数学 来源: 题型:解答题

1.已知函数f(x)=(x+1)21n(x+1)-x.
(1)求函数f(x)的单调区间;
(2)设当x≥0时,f(x)≥ax2,求实数a的取值范围.

查看答案和解析>>

科目:高中数学 来源: 题型:选择题

2.下列函数中,既是偶函数又是(0,+∞)上的增函数的是(  )
A.y=-x3B.y=2|x|C.y=${x}^{\frac{1}{2}}$D.y=log3(-x)

查看答案和解析>>

同步练习册答案