精英家教网 > 高中数学 > 题目详情
2.下列函数中,既是偶函数又是(0,+∞)上的增函数的是(  )
A.y=-x3B.y=2|x|C.y=${x}^{\frac{1}{2}}$D.y=log3(-x)

分析 分别确定函数的奇偶性,在区间(0,+∞)上的单调性,可得结论.

解答 解:解:对于A,是奇函数,在(0,+∞)上单调递减,不正确;
对于B,既是偶函数又是(0,+∞)上的增函数,正确,
对于C,非奇非偶函数,不正确;
对于D,非奇非偶函数,不正确,
故选B.

点评 本题考查函数的奇偶性,在区间(0,+∞)上的单调性,考查学生的计算能力,比较基础.

练习册系列答案
相关习题

科目:高中数学 来源: 题型:解答题

12.已知长方形ABCD如图1中,AD=$\sqrt{3}$,AB=2,E为AB中点,将△ADE沿DE折起到△PDE,所得四棱锥P-BCDE如图2所示.

(Ⅰ)若点M为PC中点,求证:BM∥平面PDE;
(Ⅱ)当平面PDE⊥平面BCDE时,求三棱锥E-PCD的体积.

查看答案和解析>>

科目:高中数学 来源: 题型:选择题

13.下面四个残差图中可以反映出回归模型拟合精度较好的为(  )
A.图1B.图2C.图3D.图4

查看答案和解析>>

科目:高中数学 来源: 题型:填空题

10.在△ABC中,a=4,b=$\sqrt{7},c=\sqrt{3}$,则角B=$\frac{π}{6}$.

查看答案和解析>>

科目:高中数学 来源: 题型:填空题

17.在极坐标系中,极点到直线ρcosθ=1的距离为1.

查看答案和解析>>

科目:高中数学 来源: 题型:填空题

7.已知函数f (x)的定义域为R.当x<0时,f(x)=ln(-x)+x;当-e≤x≤e时,f(-x)=-f(x);当x>1时,f(x+2)=f(x),则f(8)=2-ln2.

查看答案和解析>>

科目:高中数学 来源: 题型:填空题

14.在△ABC中,角A,B,C对应的边长分别是a,b,c,且$\sqrt{3}asinB=bcosA$,则角A的大小为 $\frac{π}{6}$.

查看答案和解析>>

科目:高中数学 来源: 题型:选择题

11.已知三棱锥P-ABC的各顶点都在同一球的面上,且PA⊥平面ABC,若球O的体积为$\frac{20\sqrt{5}π}{3}$(球的体积公式:V=$\frac{4π}{3}$R3,其中R为球的半径),AB=2,AC=1,∠BAC=60°,则PA为(  )
A.4B.$\sqrt{5}$C.2D.$\sqrt{3}$

查看答案和解析>>

科目:高中数学 来源: 题型:选择题

12.在校运会800米预赛中,甲、乙两名选手被随机地分配到A、B两个小组之一,则他们被分到同一小组的概率是(  )
A.$\frac{1}{4}$B.$\frac{1}{3}$C.$\frac{1}{2}$D.$\frac{1}{5}$

查看答案和解析>>

同步练习册答案