精英家教网 > 高中数学 > 题目详情
17.在极坐标系中,极点到直线ρcosθ=1的距离为1.

分析 先求出直线的直角坐标方程,求出极点的直角坐标,即可求得极点到直线ρcosθ=1的距离.

解答 解:直线ρcosθ=1,即x=1,极点的直角坐标为(0,0),故极点到直线ρcosθ=1的距离为1,
故答案为1.

点评 本题主要考查把点的极坐标化为直角坐标,点到直线的距离的定义,属于基础题.

练习册系列答案
相关习题

科目:高中数学 来源: 题型:选择题

7.已知点A(0,2),抛物线C:y2=mx(m>0)的焦点为F,射线FA与抛物线C相交于点M,与其准线相交于点N,若|FM|:|MN|=1:2,则△OFN的面积为(  )
A.$8\sqrt{3}$B.$4\sqrt{3}$C.$\frac{8\sqrt{3}}{3}$D.$\frac{4\sqrt{3}}{3}$

查看答案和解析>>

科目:高中数学 来源: 题型:解答题

8.某中学举行了一次“环保知识竞赛”活动.为了了解本次竞赛学生成绩情况,从中抽取了部分学生的分数作为样本进行统计.按照[50,60),[60,70),[70,80),[80,90),[90,100)的分组作出频率分布直方图,并作出样本分数的茎叶图(图中仅列出了得分在[50,60),[90,100)的数据)

(Ⅰ)求样本容量n和频率分布直方图中x、y的值;
(Ⅱ)在选取的样本中,从竞赛成绩是80分以上(含80分)的同学中随机抽取2名同学到市政广场参加环保宣传的志愿者活动,求所抽取的2名同学来自不同组的概率.

查看答案和解析>>

科目:高中数学 来源: 题型:解答题

5.在直角坐标系xOy中,曲线C1的方程为$\frac{x^2}{9}+{y^2}=1$.以坐标原点为极点,以x轴的正半轴为极轴,建立极坐标系,曲线C2的极坐标方程为ρ2-8ρsinθ+15=0.
(Ⅰ)写出C1的参数方程和C2的直角坐标方程;
(Ⅱ)设点P在C1上,点Q在C2上,求|PQ|的最大值.

查看答案和解析>>

科目:高中数学 来源: 题型:解答题

12.某中学高一、高二年级各有8个班,学校调查了春学期各班的文学名著阅读量(单位:本),并根据调查结果,得到如下所示的茎叶图:

为鼓励学生阅读,在高一、高二两个两个年级中,学校将阅读量高于本年级阅读量平均数的班级命名为该年级的“书香班级”.
(1)当a=4时,记高一年级“书香班级”数为m,高二年级的“书香班级”数为n,比较m,n的大小关系;
(2)在高一年级8个班级中,任意选取两个,求这两个班级均是“书香班级”的概率;
(3)若高二年级的“书香班级”数多于高一年级的“书香班级”数,求a的值(只需写出结论)

查看答案和解析>>

科目:高中数学 来源: 题型:选择题

2.下列函数中,既是偶函数又是(0,+∞)上的增函数的是(  )
A.y=-x3B.y=2|x|C.y=${x}^{\frac{1}{2}}$D.y=log3(-x)

查看答案和解析>>

科目:高中数学 来源: 题型:解答题

9.如图所示的几何体中,四边形ABCD为等腰梯形,AB∥CD,AB=2AD=2,∠DAB=60°,四边形CDEF为正方形,平面CDEF⊥平面ABCD.
(Ⅰ)若点G是棱AB的中点,求证:EG∥平面BDF;
(Ⅱ)求直线AE与平面BDF所成角的正弦值;
(Ⅲ)在线段FC上是否存在点H,使平面BDF⊥平面HAD?若存在,求$\frac{FH}{HC}$的值;若不存在,说明理由.

查看答案和解析>>

科目:高中数学 来源: 题型:选择题

6.在复平面内,复数z的对应点为(1,2),复数z的共轭复数为(  )
A.1+2iB.1-2iC.-2+iD.-2-i

查看答案和解析>>

科目:高中数学 来源: 题型:选择题

7.已知复数z满足(3-i)z=2+i(i为虚数单位),则z的共轭复数是(  )
A.$\frac{1}{2}$+$\frac{1}{2}$iB.$\frac{1}{2}$-$\frac{1}{2}i$C.-$\frac{1}{2}$+$\frac{1}{2}$iD.-$\frac{1}{2}$-$\frac{1}{2}$i

查看答案和解析>>

同步练习册答案