精英家教网 > 高中数学 > 题目详情
7.已知复数z满足(3-i)z=2+i(i为虚数单位),则z的共轭复数是(  )
A.$\frac{1}{2}$+$\frac{1}{2}$iB.$\frac{1}{2}$-$\frac{1}{2}i$C.-$\frac{1}{2}$+$\frac{1}{2}$iD.-$\frac{1}{2}$-$\frac{1}{2}$i

分析 直接利用复数的除法运算化简,从而得到复数z的共轭复数

解答 解:∵(3-i)z=2+i,
∴z=$\frac{2+i}{3-i}$=$\frac{(2+i)(3+i)}{(3+i)(3-i)}$=$\frac{5+5i}{10}$=$\frac{1}{2}$+$\frac{1}{2}$i,
∴$\overline{z}$=$\frac{1}{2}$-$\frac{1}{2}$i,
故选:B

点评 本题考查了复数代数形式的乘除运算,考查了复数的基本概念,是基础的计算题.

练习册系列答案
相关习题

科目:高中数学 来源: 题型:填空题

17.在极坐标系中,极点到直线ρcosθ=1的距离为1.

查看答案和解析>>

科目:高中数学 来源: 题型:选择题

18.在平行四边形ABCD中,$|{\overrightarrow{AD}}|=3,|{\overrightarrow{AB}}|=5,\overrightarrow{AE}=\frac{2}{3}\overrightarrow{AD},\overrightarrow{BF}=\frac{1}{3}\overrightarrow{BC},cosA=\frac{3}{5}$,则$|{\overrightarrow{EF}}$|=(  )
A.$\sqrt{14}$B.$2\sqrt{5}$C.$4\sqrt{2}$D.$2\sqrt{11}$

查看答案和解析>>

科目:高中数学 来源: 题型:填空题

15.已知实数x,y满足条件$\left\{\begin{array}{l}x-y+3≥0\\ 2x+y-4≥0\\ x≤3\end{array}\right.$则z=x2+(y+1)2的最小值为5.

查看答案和解析>>

科目:高中数学 来源: 题型:填空题

2.已知a,b,c,d∈R且满足$\frac{a+3lna}{b}$=$\frac{d-3}{2c}$=1,则(a-c)2+(b-d)2的最小值为$\frac{9}{5}$ln2$\frac{{e}^{2}}{3}$.

查看答案和解析>>

科目:高中数学 来源: 题型:选择题

12.在校运会800米预赛中,甲、乙两名选手被随机地分配到A、B两个小组之一,则他们被分到同一小组的概率是(  )
A.$\frac{1}{4}$B.$\frac{1}{3}$C.$\frac{1}{2}$D.$\frac{1}{5}$

查看答案和解析>>

科目:高中数学 来源: 题型:解答题

19.直角坐标系中,以坐标原点为极点,x轴正半轴为极轴建立极坐标系,圆C的极坐标方程为ρ=4cosθ-2sinθ.
(1)求C的参数方程;
(2)若点A在圆C上,点B(3,0),求AB中点P到原点O的距离平方的最大值.

查看答案和解析>>

科目:高中数学 来源: 题型:选择题

16.执行如图所示的程序框图,则输出的S值是(  )
A.23B.31C.32D.63

查看答案和解析>>

科目:高中数学 来源: 题型:填空题

17.已知函数$y=\frac{{|{{x^2}+x-2}|}}{x-1}$与函数y=kx-2的图象恰有两个交点,则实数k的取值范围是(-1,1)∪(1,5).

查看答案和解析>>

同步练习册答案