精英家教网 > 高中数学 > 题目详情
19.直角坐标系中,以坐标原点为极点,x轴正半轴为极轴建立极坐标系,圆C的极坐标方程为ρ=4cosθ-2sinθ.
(1)求C的参数方程;
(2)若点A在圆C上,点B(3,0),求AB中点P到原点O的距离平方的最大值.

分析 (1)已知极坐标方程两边同乘ρ,利用ρ2=x2+y2,ρcosθ=x,ρsinθ=y,化简方程得直角坐标方程,即可求C的参数方程;
(2)利用参数方程,结合三角函数知识,求AB中点P到原点O的距离平方的最大值.

解答 解:(1)极坐标方程两边同乘ρ,可得ρ2=4ρcosθ-2ρsinθ,
化为直角坐标方程为:x2+y2-4x-2y=0,即(x-2)2+(y+1)2=5,
参数方程为$\left\{\begin{array}{l}{x=2+\sqrt{5}cosα}\\{y=-1+\sqrt{5}sinα}\end{array}\right.$(α为参数);
(2)设P(x,y),A(m,n),则m=2x-3,n=2y,
∴x2+y2=$\frac{(5+\sqrt{5}cosα)^{2}}{4}$+$\frac{(-1+\sqrt{5}sinα)^{2}}{4}$=$\frac{31-2\sqrt{5}(sinα-5cosα)}{4}$=$\frac{31-2\sqrt{130}sin(α-θ)}{4}$
∴sin(α-θ)=-1,AB中点P到原点O的距离平方的最大值为$\frac{31+2\sqrt{130}}{4}$.

点评 本题是基础题,考查极坐标方程与直角坐标方程的互化,考查参数方程的运用,考查计算能力.

练习册系列答案
相关习题

科目:高中数学 来源: 题型:解答题

9.如图所示的几何体中,四边形ABCD为等腰梯形,AB∥CD,AB=2AD=2,∠DAB=60°,四边形CDEF为正方形,平面CDEF⊥平面ABCD.
(Ⅰ)若点G是棱AB的中点,求证:EG∥平面BDF;
(Ⅱ)求直线AE与平面BDF所成角的正弦值;
(Ⅲ)在线段FC上是否存在点H,使平面BDF⊥平面HAD?若存在,求$\frac{FH}{HC}$的值;若不存在,说明理由.

查看答案和解析>>

科目:高中数学 来源: 题型:选择题

10.已知双曲线C:$\frac{x^2}{a^2}-\frac{y^2}{b^2}=1$(a>0,b>0)过点$(\sqrt{2},2\sqrt{2})$,过点(0,-2)的直线l与双曲线C的一条渐进线平行,且这两条平行线间的距离为$\frac{2}{3}$,则双曲线C的实轴长为(  )
A.2B.$2\sqrt{2}$C.4D.$4\sqrt{2}$

查看答案和解析>>

科目:高中数学 来源: 题型:选择题

7.已知复数z满足(3-i)z=2+i(i为虚数单位),则z的共轭复数是(  )
A.$\frac{1}{2}$+$\frac{1}{2}$iB.$\frac{1}{2}$-$\frac{1}{2}i$C.-$\frac{1}{2}$+$\frac{1}{2}$iD.-$\frac{1}{2}$-$\frac{1}{2}$i

查看答案和解析>>

科目:高中数学 来源: 题型:选择题

14.已知F1,F2是椭圆C1与双曲线C2的公共焦点,点P是C1与C2的公共点,若椭圆C1的离心率e1=$\frac{\sqrt{3}}{2}$,∠F1PF2=$\frac{π}{2}$,则双曲线C2的离心率e2的值为(  )
A.$\frac{\sqrt{5}}{2}$B.$\frac{\sqrt{6}}{2}$C.$\sqrt{2}$D.$\sqrt{3}$

查看答案和解析>>

科目:高中数学 来源: 题型:选择题

4.已知实数a,b满足(a+2i)•bi=3i+6(i为虚数单位)则在复平面内,复数z=a+bi所对应的点位于(  )
A.第一象限B.第二象限C.第三象限D.第四象限

查看答案和解析>>

科目:高中数学 来源: 题型:解答题

11.在平面直角坐标系xOy中,以O为极点,x轴的正半轴为极轴建立极坐标系.若直线l的极坐标方程为$\sqrt{2}ρcos(θ-\frac{π}{4})-2=0$,曲线C的极坐标方程为:ρsin2θ=cosθ,将曲线C上所有点的横坐标缩短为原来的一半,纵坐标不变,然后再向右平移一个单位得到曲线C1
(Ⅰ)求曲线C1的直角坐标方程;
(Ⅱ)已知直线l与曲线C1交于A,B两点,点P(2,0),求|PA|+|PB|的值.

查看答案和解析>>

科目:高中数学 来源: 题型:选择题

8.我国南宋时期的数学家秦九韶(约1202-1261)在他的著作《数书九章》中提出了多项式求值的秦九韶算法.如图所示的框图给出了利用秦九韶算法求多项式的一个实例.若输入的n=5,v=1,x=2,则程序框图计算的是(  )
A.25+24+23+22+2+1B.25+24+23+22+2+5
C.26+25+24+23+22+2+1D.24+23+22+2+1

查看答案和解析>>

科目:高中数学 来源: 题型:填空题

9.在凸四边形ABCD中,BD=2,且$\overrightarrow{AC}•\overrightarrow{BD}=0$,$(\overrightarrow{AB}+\overrightarrow{DC})•(\overrightarrow{BC}+\overrightarrow{AD})=5$,则四边形ABCD的面积为3.

查看答案和解析>>

同步练习册答案