分析 (1)已知极坐标方程两边同乘ρ,利用ρ2=x2+y2,ρcosθ=x,ρsinθ=y,化简方程得直角坐标方程,即可求C的参数方程;
(2)利用参数方程,结合三角函数知识,求AB中点P到原点O的距离平方的最大值.
解答 解:(1)极坐标方程两边同乘ρ,可得ρ2=4ρcosθ-2ρsinθ,
化为直角坐标方程为:x2+y2-4x-2y=0,即(x-2)2+(y+1)2=5,
参数方程为$\left\{\begin{array}{l}{x=2+\sqrt{5}cosα}\\{y=-1+\sqrt{5}sinα}\end{array}\right.$(α为参数);
(2)设P(x,y),A(m,n),则m=2x-3,n=2y,
∴x2+y2=$\frac{(5+\sqrt{5}cosα)^{2}}{4}$+$\frac{(-1+\sqrt{5}sinα)^{2}}{4}$=$\frac{31-2\sqrt{5}(sinα-5cosα)}{4}$=$\frac{31-2\sqrt{130}sin(α-θ)}{4}$
∴sin(α-θ)=-1,AB中点P到原点O的距离平方的最大值为$\frac{31+2\sqrt{130}}{4}$.
点评 本题是基础题,考查极坐标方程与直角坐标方程的互化,考查参数方程的运用,考查计算能力.
科目:高中数学 来源: 题型:解答题
查看答案和解析>>
科目:高中数学 来源: 题型:选择题
| A. | 2 | B. | $2\sqrt{2}$ | C. | 4 | D. | $4\sqrt{2}$ |
查看答案和解析>>
科目:高中数学 来源: 题型:选择题
| A. | $\frac{1}{2}$+$\frac{1}{2}$i | B. | $\frac{1}{2}$-$\frac{1}{2}i$ | C. | -$\frac{1}{2}$+$\frac{1}{2}$i | D. | -$\frac{1}{2}$-$\frac{1}{2}$i |
查看答案和解析>>
科目:高中数学 来源: 题型:选择题
| A. | $\frac{\sqrt{5}}{2}$ | B. | $\frac{\sqrt{6}}{2}$ | C. | $\sqrt{2}$ | D. | $\sqrt{3}$ |
查看答案和解析>>
科目:高中数学 来源: 题型:选择题
| A. | 第一象限 | B. | 第二象限 | C. | 第三象限 | D. | 第四象限 |
查看答案和解析>>
科目:高中数学 来源: 题型:解答题
查看答案和解析>>
科目:高中数学 来源: 题型:选择题
| A. | 25+24+23+22+2+1 | B. | 25+24+23+22+2+5 | ||
| C. | 26+25+24+23+22+2+1 | D. | 24+23+22+2+1 |
查看答案和解析>>
科目:高中数学 来源: 题型:填空题
查看答案和解析>>
湖北省互联网违法和不良信息举报平台 | 网上有害信息举报专区 | 电信诈骗举报专区 | 涉历史虚无主义有害信息举报专区 | 涉企侵权举报专区
违法和不良信息举报电话:027-86699610 举报邮箱:58377363@163.com