精英家教网 > 高中数学 > 题目详情
4.已知实数a,b满足(a+2i)•bi=3i+6(i为虚数单位)则在复平面内,复数z=a+bi所对应的点位于(  )
A.第一象限B.第二象限C.第三象限D.第四象限

分析 根据复数的代数形式的运算,利用复数相等求出a、b的值,再判断复平面内z所对应的点位于第几象限.

解答 解:∵(a+2i)•bi=3i+6,
∴abi-2b=3i+6,
∴$\left\{\begin{array}{l}{ab=3}\\{-2b=6}\end{array}\right.$,
解得a=-1,b=-3;
∴复平面内,复数z=a+bi=-1-3i;
∴z所对应的点(-1,-3)位于第三象限.
故选:C.

点评 本题考查了复数代数形式的运算与复数相等的应用问题,是基础题.

练习册系列答案
相关习题

科目:高中数学 来源: 题型:填空题

14.在△ABC中,角A,B,C对应的边长分别是a,b,c,且$\sqrt{3}asinB=bcosA$,则角A的大小为 $\frac{π}{6}$.

查看答案和解析>>

科目:高中数学 来源: 题型:填空题

15.已知实数x,y满足条件$\left\{\begin{array}{l}x-y+3≥0\\ 2x+y-4≥0\\ x≤3\end{array}\right.$则z=x2+(y+1)2的最小值为5.

查看答案和解析>>

科目:高中数学 来源: 题型:选择题

12.在校运会800米预赛中,甲、乙两名选手被随机地分配到A、B两个小组之一,则他们被分到同一小组的概率是(  )
A.$\frac{1}{4}$B.$\frac{1}{3}$C.$\frac{1}{2}$D.$\frac{1}{5}$

查看答案和解析>>

科目:高中数学 来源: 题型:解答题

19.直角坐标系中,以坐标原点为极点,x轴正半轴为极轴建立极坐标系,圆C的极坐标方程为ρ=4cosθ-2sinθ.
(1)求C的参数方程;
(2)若点A在圆C上,点B(3,0),求AB中点P到原点O的距离平方的最大值.

查看答案和解析>>

科目:高中数学 来源: 题型:解答题

9.在平面直角坐标系xOy中,直线l的参数方程为$\left\{{\begin{array}{l}{x=\frac{{\sqrt{2}}}{2}t}\\{y=\frac{{\sqrt{2}}}{2}t}\end{array}}\right.$(t为参数),圆C的方程为x2+y2-4x-2y+4=0.以O为极点,x轴正半轴为极轴建立极坐标系.
(1)求l的普通方程与C的极坐标方程;
(2)已知l与C交于P,Q,求|PQ|.

查看答案和解析>>

科目:高中数学 来源: 题型:选择题

16.执行如图所示的程序框图,则输出的S值是(  )
A.23B.31C.32D.63

查看答案和解析>>

科目:高中数学 来源: 题型:解答题

13.小明计划在8月11日至8月20日期间游览某主题公园.根据旅游局统计数据,该主题公园在此期间“游览舒适度”(即在园人数与景区主管部门核定的最大瞬时容量之比,40%以下为舒适,40%-60%为一般,60%以上为拥挤)情况如图所示.小明随机选择8月11日至8月19日中的某一天到达该主题公园,并游览2天.

(Ⅰ)求小明连续两天都遇上拥挤的概率;
(Ⅱ)设X是小明游览期间遇上舒适的天数,求X的分布列和数学期望;
(Ⅲ)由图判断从哪天开始连续三天游览舒适度的方差最大?(结论不要求证明)

查看答案和解析>>

科目:高中数学 来源: 题型:选择题

1.在平面直角坐标系中,不等式组$\left\{\begin{array}{l}{\sqrt{3}x-y≤0}\\{x-\sqrt{3}y+2≥0}\\{y≥0}\end{array}\right.$表示的平面区域的面积是(  )
A.$\frac{\sqrt{3}}{2}$B.$\sqrt{3}$C.2D.2$\sqrt{3}$

查看答案和解析>>

同步练习册答案