精英家教网 > 高中数学 > 题目详情
13.小明计划在8月11日至8月20日期间游览某主题公园.根据旅游局统计数据,该主题公园在此期间“游览舒适度”(即在园人数与景区主管部门核定的最大瞬时容量之比,40%以下为舒适,40%-60%为一般,60%以上为拥挤)情况如图所示.小明随机选择8月11日至8月19日中的某一天到达该主题公园,并游览2天.

(Ⅰ)求小明连续两天都遇上拥挤的概率;
(Ⅱ)设X是小明游览期间遇上舒适的天数,求X的分布列和数学期望;
(Ⅲ)由图判断从哪天开始连续三天游览舒适度的方差最大?(结论不要求证明)

分析 设Ai表示事件“小明8月11日起第i日连续两天游览主题公园”(i=1,2,…,9).根据题意,$P({A_i})=\frac{1}{9}$,且事件Ai与Aj互斥.
(Ⅰ)设B为事件“小明连续两天都遇上拥挤”,则B=A4∪A7.利用互斥事件的概率计算公式即可得出.
(Ⅱ)由题意,可知X的所有可能取值为0,1,2,结合图象,利用互斥事件与古典概率计算公式即可得出.
(Ⅲ)从8月16日开始连续三天游览舒适度的方差最大.

解答 解:设Ai表示事件“小明8月11日起第i日连续两天游览主题公园”(i=1,2,…,9).
根据题意,$P({A_i})=\frac{1}{9}$,且事件Ai与Aj互斥.…(1分)
(Ⅰ)设B为事件“小明连续两天都遇上拥挤”,
则B=A4∪A7.…(2分)
所以$P(B)=P({A_4}∪{A_7})=P({A_4})+P({A_7})=\frac{2}{9}$.…(5分)
(Ⅱ)由题意,可知X的所有可能取值为0,1,2,…(6分)
$P(X=0)=P({A_4}∪{A_7}∪{A_8})=P({A_4})+P({A_7})+P({A_8})=\frac{1}{3}$,…(7分)
$P(X=1)=P({A_3}∪{A_5}∪{A_6}∪{A_9})=P({A_3})+P({A_5})+P({A_6})+P({A_9})=\frac{4}{9}$,…(8分)
$P(X=2)=P({A_1}∪{A_2})=P({A_1})+P({A_2})=\frac{2}{9}$.       …(9分)
所以X的分布列为

X012
P$\frac{1}{3}$$\frac{4}{9}$$\frac{2}{9}$
…(10分)
故X的期望$EX=0×\frac{1}{3}+1×\frac{4}{9}+2×\frac{2}{9}=\frac{8}{9}$.…(11分)
(Ⅲ)从8月16日开始连续三天游览舒适度的方差最大.…(13分)

点评 本题考查了随机变量的分布列及其数学期望、互斥事件与古典概率计算公式、数形结合思想方法,考查了推理能力与计算能力,属于中档题.

练习册系列答案
相关习题

科目:高中数学 来源: 题型:解答题

3.五一期间,某商场决定从2种服装、3种家电、4种日用品中,选出3种商品进行促销活动.
(1)试求选出3种商品中至少有一种是家电的概率;
(2)商场对选出的某商品采用抽奖方式进行促销,即在该商品现价的基础上将价格提高60元,规定购买该商品的顾客有3次抽奖的机会:若中一次奖,则获得数额为n元的奖金;若中两次奖,则获得数额为3n元的奖金;若中三次奖,则共获得数额为 6n元的奖金.假设顾客每次抽奖中奖的概率都是$\frac{1}{4}$,请问:商场将奖金数额n最高定为多少元,才能使促销方案对商场有利?

查看答案和解析>>

科目:高中数学 来源: 题型:选择题

4.已知实数a,b满足(a+2i)•bi=3i+6(i为虚数单位)则在复平面内,复数z=a+bi所对应的点位于(  )
A.第一象限B.第二象限C.第三象限D.第四象限

查看答案和解析>>

科目:高中数学 来源: 题型:选择题

1.执行如图所示的程序框图,则输出的S值是(  )
A.15B.29C.31D.63

查看答案和解析>>

科目:高中数学 来源: 题型:选择题

8.我国南宋时期的数学家秦九韶(约1202-1261)在他的著作《数书九章》中提出了多项式求值的秦九韶算法.如图所示的框图给出了利用秦九韶算法求多项式的一个实例.若输入的n=5,v=1,x=2,则程序框图计算的是(  )
A.25+24+23+22+2+1B.25+24+23+22+2+5
C.26+25+24+23+22+2+1D.24+23+22+2+1

查看答案和解析>>

科目:高中数学 来源: 题型:选择题

18.已知全集U是实数集R.如图的韦恩图表示集合M={x|x>2}与N={x|1<x<3}关系,那么阴影部分所表示的集合可能为(  )
A.{x|x<2}B.{x|1<x<2}C.{x|x>3}D.{x|x≤1}

查看答案和解析>>

科目:高中数学 来源: 题型:填空题

5.如图茎叶图记录了甲,乙两班各六名同学一周的课外阅读时间(单位:小时),已知甲班数据的平均数为13,乙班数据的中位数为17,那么x的位置应填3;y的位置应填8.

查看答案和解析>>

科目:高中数学 来源: 题型:解答题

2.已知函数f(x)=xsinx+cosx.
(1)当$x∈(\frac{π}{4},π)$时,求函数f(x)的单调区间;
(2)若存在$x∈(\frac{π}{4},\frac{π}{2})$,使得f(x)>kx2+cosx成立,求实数k的取值范围.

查看答案和解析>>

科目:高中数学 来源: 题型:解答题

10.设已知抛物线C:y2=2px的焦点为F1,过F1的直线l与曲线C相交于M,N两点.
(1)若直线l的倾斜角为60°,且|MN|=$\frac{16}{3}$,求p;
(2)若p=2,椭圆$\frac{{x}^{2}}{2}$+y2=1上两个点P,Q,满足:P,Q,F1三点共线且PQ⊥MN,求四边形PMQN的面积的最小值.

查看答案和解析>>

同步练习册答案