精英家教网 > 高中数学 > 题目详情
2.已知函数f(x)=xsinx+cosx.
(1)当$x∈(\frac{π}{4},π)$时,求函数f(x)的单调区间;
(2)若存在$x∈(\frac{π}{4},\frac{π}{2})$,使得f(x)>kx2+cosx成立,求实数k的取值范围.

分析 (1)求出函数的导数,通过讨论x的范围,求出函数的单调区间即可;
(2)分离参数,问题转化为$k<\frac{sinx}{x}$.令$h(x)=\frac{sinx}{x}$,则$h'(x)=\frac{xcosx-sinx}{x^2}$,根据函数的单调性求出h(x)的最大值,从而求出k的范围即可.

解答 解:( 1)f'(x)=sinx+xcosx-sinx=xcosx,…(2分)
∴$x∈({\frac{π}{4},\frac{π}{2}})$时,f'(x)=xcosx>0,
∴函数f(x)在$({\frac{π}{4},\frac{π}{2}})$上是增函数;
$x∈({\frac{π}{2},π})$时,f'(x)=xcosx<0,
∴函数f(x)在$({\frac{π}{2},π})$上是减函数;  …(5分)
( 2)由题意等价于xsinx+cosx>kx2+cosx,整理得$k<\frac{sinx}{x}$.
令$h(x)=\frac{sinx}{x}$,则$h'(x)=\frac{xcosx-sinx}{x^2}$,
令g(x)=xcosx-sinx,g'(x)=-xsinx<0,
∴g(x)在$x∈(\frac{π}{4}\;,\;\;\frac{π}{2})$上单调递减,
∴$g(x)<g(\frac{π}{4})=\frac{{\sqrt{2}}}{2}×(\frac{π}{4}-1)<0$,即g(x)=xcosx-sinx<0,…(10分)
∴$h'(x)=\frac{xcosx-sinx}{x^2}<0$,即$h(x)=\frac{sinx}{x}$在$(\frac{π}{4}\;,\;\;\frac{π}{2})$上单调递减,
∴$h(x)<\frac{{sin\frac{π}{4}}}{{\frac{π}{4}}}=\frac{{\frac{{\sqrt{2}}}{2}}}{{\frac{π}{4}}}=\frac{{2\sqrt{2}}}{π}$,即$k<\frac{{2\sqrt{2}}}{π}$.           …(12分)

点评 本题考查了函数的单调性、最值问题,考查导数的应用以及函数恒成立问题,是一道中档题.

练习册系列答案
相关习题

科目:高中数学 来源: 题型:选择题

12.在校运会800米预赛中,甲、乙两名选手被随机地分配到A、B两个小组之一,则他们被分到同一小组的概率是(  )
A.$\frac{1}{4}$B.$\frac{1}{3}$C.$\frac{1}{2}$D.$\frac{1}{5}$

查看答案和解析>>

科目:高中数学 来源: 题型:解答题

13.小明计划在8月11日至8月20日期间游览某主题公园.根据旅游局统计数据,该主题公园在此期间“游览舒适度”(即在园人数与景区主管部门核定的最大瞬时容量之比,40%以下为舒适,40%-60%为一般,60%以上为拥挤)情况如图所示.小明随机选择8月11日至8月19日中的某一天到达该主题公园,并游览2天.

(Ⅰ)求小明连续两天都遇上拥挤的概率;
(Ⅱ)设X是小明游览期间遇上舒适的天数,求X的分布列和数学期望;
(Ⅲ)由图判断从哪天开始连续三天游览舒适度的方差最大?(结论不要求证明)

查看答案和解析>>

科目:高中数学 来源: 题型:解答题

10.如图,在四棱柱ABCD-A1B1C1D1中,侧面ADD1A1和侧面CDD1C1都是矩形,BC∥AD,△ABD是边长为2的正三角形,E,F分别为AD,A1D1的中点.
(Ⅰ)求证:DD1⊥平面ABCD;
(Ⅱ)求证:平面A1BE⊥平面ADD1A1
(Ⅲ)若CF∥平面A1BE,求棱BC的长度.

查看答案和解析>>

科目:高中数学 来源: 题型:填空题

17.已知函数$y=\frac{{|{{x^2}+x-2}|}}{x-1}$与函数y=kx-2的图象恰有两个交点,则实数k的取值范围是(-1,1)∪(1,5).

查看答案和解析>>

科目:高中数学 来源: 题型:选择题

7.已知双曲线C:$\frac{{x}^{2}}{{a}^{2}}-\frac{{y}^{2}}{{b}^{2}}=1$(a>0,b>0)的左、右焦点分别为F1,F2,第二象限的点P(x0,y0)满足bx0+ay0=0,若线段PF2的垂直平分线恰为双曲线C的过一、三象限的渐近线,则双曲线C的离心率为(  )
A.$\sqrt{5}$B.4C.$\sqrt{3}$D.2

查看答案和解析>>

科目:高中数学 来源: 题型:选择题

1.在平面直角坐标系中,不等式组$\left\{\begin{array}{l}{\sqrt{3}x-y≤0}\\{x-\sqrt{3}y+2≥0}\\{y≥0}\end{array}\right.$表示的平面区域的面积是(  )
A.$\frac{\sqrt{3}}{2}$B.$\sqrt{3}$C.2D.2$\sqrt{3}$

查看答案和解析>>

科目:高中数学 来源: 题型:选择题

18.设集合A={0,1},B={x|x2+x-2=0},则A∪B=(  )
A.B.{1}C.{-2,0,1}D.{-1,0,1,2}

查看答案和解析>>

科目:高中数学 来源: 题型:选择题

19.若命题“?x0∈R,x02+(a-1)x0+1<0”是真命题,则实数a的取值范围是(  )
A.[-1,3]B.(-1,3)C.(-∞,-1]∪[3,+∞)D.(-∞,-1)∪(3,+∞)

查看答案和解析>>

同步练习册答案