精英家教网 > 高中数学 > 题目详情
17.已知函数$y=\frac{{|{{x^2}+x-2}|}}{x-1}$与函数y=kx-2的图象恰有两个交点,则实数k的取值范围是(-1,1)∪(1,5).

分析 化简函数的解析式,画出两个函数的图象,判断k的范围即可.

解答 解:$f(x)=\frac{{|{(x+2)(x-1)}|}}{x-1}=\left\{\begin{array}{l}-x-2,-2≤x<1\\ x+2,x<-2或x>1.\end{array}\right.$
直线y=kx-2过定点(0,-2),
由函数图象:
可知结果为:(-1,1)∪(1,5).
给答案为:(-1,1)∪(1,5).

点评 本题考查函数与方程的应用,函数的零点个数的判断,考查数形结合思想的应用.

练习册系列答案
相关习题

科目:高中数学 来源: 题型:选择题

7.已知复数z满足(3-i)z=2+i(i为虚数单位),则z的共轭复数是(  )
A.$\frac{1}{2}$+$\frac{1}{2}$iB.$\frac{1}{2}$-$\frac{1}{2}i$C.-$\frac{1}{2}$+$\frac{1}{2}$iD.-$\frac{1}{2}$-$\frac{1}{2}$i

查看答案和解析>>

科目:高中数学 来源: 题型:选择题

8.我国南宋时期的数学家秦九韶(约1202-1261)在他的著作《数书九章》中提出了多项式求值的秦九韶算法.如图所示的框图给出了利用秦九韶算法求多项式的一个实例.若输入的n=5,v=1,x=2,则程序框图计算的是(  )
A.25+24+23+22+2+1B.25+24+23+22+2+5
C.26+25+24+23+22+2+1D.24+23+22+2+1

查看答案和解析>>

科目:高中数学 来源: 题型:填空题

5.如图茎叶图记录了甲,乙两班各六名同学一周的课外阅读时间(单位:小时),已知甲班数据的平均数为13,乙班数据的中位数为17,那么x的位置应填3;y的位置应填8.

查看答案和解析>>

科目:高中数学 来源: 题型:解答题

12.已知椭圆E:mx2+y2=1(m>0).
(Ⅰ)若椭圆E的右焦点坐标为$(\sqrt{3},0)$,求m的值;
(Ⅱ)由椭圆E上不同三点构成的三角形称为椭圆的内接三角形.若以B(0,1)为直角顶点的椭圆E的内接等腰直角三角形恰有三个,求m的取值范围.

查看答案和解析>>

科目:高中数学 来源: 题型:解答题

2.已知函数f(x)=xsinx+cosx.
(1)当$x∈(\frac{π}{4},π)$时,求函数f(x)的单调区间;
(2)若存在$x∈(\frac{π}{4},\frac{π}{2})$,使得f(x)>kx2+cosx成立,求实数k的取值范围.

查看答案和解析>>

科目:高中数学 来源: 题型:填空题

9.在凸四边形ABCD中,BD=2,且$\overrightarrow{AC}•\overrightarrow{BD}=0$,$(\overrightarrow{AB}+\overrightarrow{DC})•(\overrightarrow{BC}+\overrightarrow{AD})=5$,则四边形ABCD的面积为3.

查看答案和解析>>

科目:高中数学 来源: 题型:选择题

13.若数列{an}为等差数列,S99=198,则a48+a49+a50+a51+a52=(  )
A.7B.8C.10D.11

查看答案和解析>>

科目:高中数学 来源: 题型:填空题

14.若圆x2+y2-4x-4y-10=0上至少有三个不同的点到直线l:y=x+b的距离为$2\sqrt{2}$,则b取值范围为[-2,2].

查看答案和解析>>

同步练习册答案