精英家教网 > 高中数学 > 题目详情
14.已知F1,F2是椭圆C1与双曲线C2的公共焦点,点P是C1与C2的公共点,若椭圆C1的离心率e1=$\frac{\sqrt{3}}{2}$,∠F1PF2=$\frac{π}{2}$,则双曲线C2的离心率e2的值为(  )
A.$\frac{\sqrt{5}}{2}$B.$\frac{\sqrt{6}}{2}$C.$\sqrt{2}$D.$\sqrt{3}$

分析 设椭圆及双曲线方程,利用定义求得丨PF1丨=a1+a2,丨PF2丨=a1-a2,利用勾股定理及椭圆的离心率公式,求得a22=$\frac{2}{3}$c2,利用双曲线的离心率公式即可求得e2的值

解答 解:设椭圆的标准方程:$\frac{{x}^{2}}{{a}_{1}^{2}}+\frac{{y}^{2}}{{b}_{1}^{2}}=1$(a1>b1>0),双曲线的标准方程:$\frac{{x}^{2}}{{a}_{2}^{2}}-\frac{{y}^{2}}{{b}_{2}^{2}}=1$(a2>0,b2>0),
由题意可知丨PF1丨+丨PF2丨=2a1,丨PF1丨-丨PF2丨=2a2
丨PF1丨=a1+a2,丨PF2丨=a1-a2
由∠F1PF2=$\frac{π}{2}$,则丨PF12+丨PF22=丨F1F22
∴(a1+a22+(a1-a22=(2c)2,即a12+a22=2c2
由椭圆C1的离心率e1=$\frac{c}{{a}_{1}}$=$\frac{\sqrt{3}}{2}$,则3a12=4c2
∴a22=$\frac{2}{3}$c2,即$\frac{c}{{a}_{2}}$=$\frac{\sqrt{6}}{2}$,
则双曲线C2的离心率e2的值为$\frac{\sqrt{6}}{2}$,
故选:B.

点评 本题考查椭圆及双曲线的定义及简单几何性质,考查数形结合思想,属于中档题.

练习册系列答案
相关习题

科目:高中数学 来源: 题型:填空题

4.执行如图所示的程序框图,若输入x=6的值为6,则输出的x值为0.

查看答案和解析>>

科目:高中数学 来源: 题型:选择题

5.已知点F2,P分别为双曲线$\frac{x^2}{a^2}-\frac{y^2}{b^2}=1({a>0,b>0})$的右焦点与右支上的一点,O为坐标原点,若点M是PF2的中点,$|{\overrightarrow{O{F_2}}}|=|{\overrightarrow{{F_2}M}}$|,且$\overrightarrow{O{F_2}}•\overrightarrow{{F_2}M}=\frac{c^2}{2}$,则该双曲线的离心率为(  )
A.$\frac{{\sqrt{3}+1}}{2}$B.$\frac{3}{2}$C.$\sqrt{3}$D.$2\sqrt{3}$

查看答案和解析>>

科目:高中数学 来源: 题型:填空题

2.已知a,b,c,d∈R且满足$\frac{a+3lna}{b}$=$\frac{d-3}{2c}$=1,则(a-c)2+(b-d)2的最小值为$\frac{9}{5}$ln2$\frac{{e}^{2}}{3}$.

查看答案和解析>>

科目:高中数学 来源: 题型:选择题

9.(1-$\sqrt{x}$)6(1-$\root{3}{x}$)4的展开式中,x2的系数是(  )
A.-75B.-45C.45D.75

查看答案和解析>>

科目:高中数学 来源: 题型:解答题

19.直角坐标系中,以坐标原点为极点,x轴正半轴为极轴建立极坐标系,圆C的极坐标方程为ρ=4cosθ-2sinθ.
(1)求C的参数方程;
(2)若点A在圆C上,点B(3,0),求AB中点P到原点O的距离平方的最大值.

查看答案和解析>>

科目:高中数学 来源: 题型:选择题

6.名著《算学启蒙》中有如下题:“松长五尺,竹长两尺,松日自半,竹日自倍,松竹何日而长等”.这段话的意思是:“松有五尺长,竹有两尺长,松每天增长前一天长度的一半,竹每天增长前一天长度的两倍.”.为了研究这个问题,以a代表松长,以b代表竹长,设计了如图所示的程序框图,输入的a,b的值分别为5,2,则输出的n的值为(  )
A.3B.4C.5D.6

查看答案和解析>>

科目:高中数学 来源: 题型:选择题

3.将函数f(x)=cos2x图象上所有点向右平移$\frac{π}{4}$个单位长度后得到函数g(x)的图象,若g(x)在区间[0,a]上单调递增,则实数a的最大值为(  )
A.$\frac{π}{8}$B.$\frac{π}{4}$C.$\frac{π}{2}$D.$\frac{3}{4}π$

查看答案和解析>>

科目:高中数学 来源: 题型:解答题

4.设函数f(x)=|x-3|,g(x)=|x-2|
(1)解不等式f(x)+g(x)<2;
(2)对于实数x,y,若f(x)≤1,g(y)≤1,证明:|x-2y+1|≤3.

查看答案和解析>>

同步练习册答案