精英家教网 > 高中数学 > 题目详情
6.名著《算学启蒙》中有如下题:“松长五尺,竹长两尺,松日自半,竹日自倍,松竹何日而长等”.这段话的意思是:“松有五尺长,竹有两尺长,松每天增长前一天长度的一半,竹每天增长前一天长度的两倍.”.为了研究这个问题,以a代表松长,以b代表竹长,设计了如图所示的程序框图,输入的a,b的值分别为5,2,则输出的n的值为(  )
A.3B.4C.5D.6

分析 模拟程序的运行,依次写出每次循环得到的n,a,b的值,当a=$\frac{405}{16}$,b=32时满足条件a≤b,退出循环,输出n的值为4.

解答 解:模拟程序的运行,可得
a=5,b=2,n=1
a=$\frac{15}{2}$,b=4
不满足条件a≤b,n=2,a=$\frac{45}{4}$,b=8
不满足条件a≤b,n=3,a=$\frac{135}{8}$,b=16
不满足条件a≤b,n=4,a=$\frac{405}{16}$,b=32
满足条件a≤b,退出循环,输出n的值为4.
故选:B.

点评 本题考查的知识点是程序框图,当循环次数不多,或有规律可循时,可采用模拟程序法进行解答,属于基础题.

练习册系列答案
相关习题

科目:高中数学 来源: 题型:填空题

16.已知函数$f(x)=\left\{\begin{array}{l}-{(x-1)^2}+2,\;\;\;x≤1\\ \frac{1}{x}+1,\;\;x>1\;.\;\;\end{array}\right.$下列四个命题:
①f(f(1))>f(3);
②?x0∈(1,+∞),$f'({x_0})=-\frac{1}{3}$;
③f(x)的极大值点为x=1;
④?x1,x2∈(0,+∞),|f(x1)-f(x2)|≤1
其中正确的有①②③④.(写出所有正确命题的序号)

查看答案和解析>>

科目:高中数学 来源: 题型:解答题

17.已知函数f(x)=lnx-a(a∈R)与函数$F(x)=x+\frac{2}{x}$有公共切线.
(Ⅰ)求a的取值范围;
(Ⅱ)若不等式xf(x)+e>2-a对于x>0的一切值恒成立,求a的取值范围.

查看答案和解析>>

科目:高中数学 来源: 题型:选择题

14.已知F1,F2是椭圆C1与双曲线C2的公共焦点,点P是C1与C2的公共点,若椭圆C1的离心率e1=$\frac{\sqrt{3}}{2}$,∠F1PF2=$\frac{π}{2}$,则双曲线C2的离心率e2的值为(  )
A.$\frac{\sqrt{5}}{2}$B.$\frac{\sqrt{6}}{2}$C.$\sqrt{2}$D.$\sqrt{3}$

查看答案和解析>>

科目:高中数学 来源: 题型:选择题

1.Sn是数列{an}的前n项和,Sn=3an-2a1,a3=$\frac{1}{4}$,bn=anlnan,则数列{bn}的最小项是(  )
A.第3项B.第4项C.第5项D.第6项

查看答案和解析>>

科目:高中数学 来源: 题型:解答题

11.在平面直角坐标系xOy中,以O为极点,x轴的正半轴为极轴建立极坐标系.若直线l的极坐标方程为$\sqrt{2}ρcos(θ-\frac{π}{4})-2=0$,曲线C的极坐标方程为:ρsin2θ=cosθ,将曲线C上所有点的横坐标缩短为原来的一半,纵坐标不变,然后再向右平移一个单位得到曲线C1
(Ⅰ)求曲线C1的直角坐标方程;
(Ⅱ)已知直线l与曲线C1交于A,B两点,点P(2,0),求|PA|+|PB|的值.

查看答案和解析>>

科目:高中数学 来源: 题型:选择题

18.现将5张连号的电影票分给甲、乙等5个人,每人一张,且甲、乙分得的电影票连号,则共有不同分法的种数为(  )
A.12B.24C.36D.48

查看答案和解析>>

科目:高中数学 来源: 题型:解答题

15.设函数f(x)=(x2+ax-a)•e-x(a∈R).
(Ⅰ)当a=0时,求曲线y=f(x)在点(-1,f(-1))处的切线方程;
(Ⅱ)设g(x)=x2-x-1,若对任意的t∈[0,2],存在s∈[0,2]使得f(s)≥g(t)成立,求a的取值范围.

查看答案和解析>>

科目:高中数学 来源: 题型:选择题

3.已知变量x,y满足约束条件$\left\{\begin{array}{l}{x+y≥2}\\{x-2y+4≥0}\\{2x-y-4≤0}\end{array}\right.$,若x2+y2+2x≥k恒成立,则实数k的最大值为(  )
A.40B.9C.8D.$\frac{7}{2}$

查看答案和解析>>

同步练习册答案