精英家教网 > 高中数学 > 题目详情
17.已知函数f(x)=lnx-a(a∈R)与函数$F(x)=x+\frac{2}{x}$有公共切线.
(Ⅰ)求a的取值范围;
(Ⅱ)若不等式xf(x)+e>2-a对于x>0的一切值恒成立,求a的取值范围.

分析 (Ⅰ)$f'(x)=\frac{1}{x}$,$F'(x)=1-\frac{2}{x^2}$.由函数f(x)与F(x)有公共切线,知函数f(x)与F(x)的图象相切或无交点.由此能求出a的取值范围.
(Ⅱ)等价于xlnx+a+e-2-ax≥0在x∈(0,+∞)上恒成立,令g(x)=xlnx+a+e-2-ax,g'(x)=lnx+1-a,令g'(x)=0,得$x=\frac{e^a}{e}$,从而求出g(x)的最小值,令$t(x)=x+e-2-\frac{e^x}{e}$,由$t'(x)=1-\frac{e^x}{e}$=0,得x=1,由此能求出a的取值范围.

解答 解:(Ⅰ)$f'(x)=\frac{1}{x}$,$F'(x)=1-\frac{2}{x^2}$.
∵函数f(x)与F(x)有公共切线,∴函数f(x)与F(x)的图象相切或无交点.
当两函数图象相切时,设切点的横坐标为x0(x0>0),则$f'({x_0})=\frac{1}{x_0}=F'({x_0})=1-\frac{2}{{{x_0}^2}}$,
解得x0=2或x0=-1(舍去),
则f(2)=F(2),得a=ln2-3,
由此求出a≥ln2-3,即a的取值范围为[ln2-3,+∞).
(Ⅱ)等价于xlnx+a+e-2-ax≥0在x∈(0,+∞)上恒成立,
令g(x)=xlnx+a+e-2-ax,
因为g'(x)=lnx+1-a,令g'(x)=0,得$x=\frac{e^a}{e}$,

x$(0,\frac{e^a}{e})$$\frac{e^a}{e}$$(\frac{e^a}{e},+∞)$
g'(x)-0+
g(x)极小值
所以g(x)的最小值为$g(\frac{e^a}{e})=(a-1)\frac{e^a}{e}+a+e-2-a•\frac{e^a}{e}=a+e-2-\frac{e^a}{e}$,
令$t(x)=x+e-2-\frac{e^x}{e}$,因为$t'(x)=1-\frac{e^x}{e}$,
令t'(x)=0,得x=1,且
x(0,1)1(1,+∞)
t'(x)+0-
t(x)极大值
所以当a∈(0,1)时,g(x)的最小值$t(a)>t(0)=e-2-\frac{1}{e}=\frac{e(e-2)-1}{e}>0$,
当a∈[1,+∞)时,g(x)的最小值为$t(a)=ae-2-\frac{e^a}{e}≥0$=t(2),
所以a∈[1,2].
综上得a的取值范围为(0,2].

点评 本题考查实数的取值范围、导数性质、构造法、导数的几何意义等基础知识,考查推理论证能力、运算求解能力,考查化归与转化思想、函数与方程思想、分类与整合思想,考查创新意识、应用意识,是中档题.

练习册系列答案
相关习题

科目:高中数学 来源: 题型:选择题

7.已知{an}为等差数列,Sn为其前n项和,若a1=2,S3=15,则a6=(  )
A.17B.14C.13D.3

查看答案和解析>>

科目:高中数学 来源: 题型:选择题

8.已知双曲线C:$\frac{{x}^{2}}{{a}^{2}}$-$\frac{{y}^{2}}{{b}^{2}}$=1(a>0,b>0)的一条渐近线与直线l:x-y+2=0平行,则双曲线C的离心率为(  )
A.$\frac{\sqrt{5}}{2}$B.$\sqrt{2}$C.$\frac{2\sqrt{3}}{3}$D.$\sqrt{10}$

查看答案和解析>>

科目:高中数学 来源: 题型:选择题

5.已知点F2,P分别为双曲线$\frac{x^2}{a^2}-\frac{y^2}{b^2}=1({a>0,b>0})$的右焦点与右支上的一点,O为坐标原点,若点M是PF2的中点,$|{\overrightarrow{O{F_2}}}|=|{\overrightarrow{{F_2}M}}$|,且$\overrightarrow{O{F_2}}•\overrightarrow{{F_2}M}=\frac{c^2}{2}$,则该双曲线的离心率为(  )
A.$\frac{{\sqrt{3}+1}}{2}$B.$\frac{3}{2}$C.$\sqrt{3}$D.$2\sqrt{3}$

查看答案和解析>>

科目:高中数学 来源: 题型:选择题

12.设集合A={x∈Z|(x+1)(x-4)≤0},B={x|x≤a},若A∪B=B,则a的值可以是(  )
A.1B.2C.3D.4

查看答案和解析>>

科目:高中数学 来源: 题型:填空题

2.已知a,b,c,d∈R且满足$\frac{a+3lna}{b}$=$\frac{d-3}{2c}$=1,则(a-c)2+(b-d)2的最小值为$\frac{9}{5}$ln2$\frac{{e}^{2}}{3}$.

查看答案和解析>>

科目:高中数学 来源: 题型:选择题

9.(1-$\sqrt{x}$)6(1-$\root{3}{x}$)4的展开式中,x2的系数是(  )
A.-75B.-45C.45D.75

查看答案和解析>>

科目:高中数学 来源: 题型:选择题

6.名著《算学启蒙》中有如下题:“松长五尺,竹长两尺,松日自半,竹日自倍,松竹何日而长等”.这段话的意思是:“松有五尺长,竹有两尺长,松每天增长前一天长度的一半,竹每天增长前一天长度的两倍.”.为了研究这个问题,以a代表松长,以b代表竹长,设计了如图所示的程序框图,输入的a,b的值分别为5,2,则输出的n的值为(  )
A.3B.4C.5D.6

查看答案和解析>>

科目:高中数学 来源: 题型:解答题

7.在等差数列{an}中,a1=-2,a12=20.
(Ⅰ)求通项an
(Ⅱ)若${b_n}=\frac{{{a_1}+{a_2}+…{a_n}}}{n}$,求数列$\left\{{{3^{b_n}}}\right\}$的前n项和.

查看答案和解析>>

同步练习册答案