精英家教网 > 高中数学 > 题目详情
12.设集合A={x∈Z|(x+1)(x-4)≤0},B={x|x≤a},若A∪B=B,则a的值可以是(  )
A.1B.2C.3D.4

分析 化简A,利用B={x|x≤a},A∪B=B,求出a的值.

解答 解:A={x∈Z|(x+1)(x-4)≤0}={-1,0,1,2,3,4},
∵A∪B=B,
∴A⊆B,
∵B={x|x≤a},∴a≥4,
故选D.

点评 此题考查了子集与集合的运算,考查不等式的解法,比较基础.

练习册系列答案
相关习题

科目:高中数学 来源: 题型:解答题

2.如图,菱形ABCD与等边△PAD所在的平面相互垂直,AD=2,∠DAB=60°.
(Ⅰ)证明:AD⊥PB;
(Ⅱ)求三棱锥C-PAB的高.

查看答案和解析>>

科目:高中数学 来源: 题型:填空题

3.在△ABC中,a、b、c分别是角A、B、C的对边,△ABC的面积为S,(a2+b2)tanC=8S,则$\frac{si{n}^{2}A+si{n}^{2}B}{si{n}^{2}C}$=2.

查看答案和解析>>

科目:高中数学 来源: 题型:填空题

20.已知$a=\int_0^π{2sin\frac{x}{2}}cos\frac{x}{2}dx$,则a=2.

查看答案和解析>>

科目:高中数学 来源: 题型:解答题

7.已知函数f(x)=alnx+$\frac{1}{x}$-bx+1.
(1)若2a-b=4,则当a>2时,讨论f(x)单调性;
(2)若b=-1,F(x)=f(x)-$\frac{5}{x}$,且当a≥-4时,不等式F(x)≥2在区间[1,4]上有解,求实数a的取值范围.

查看答案和解析>>

科目:高中数学 来源: 题型:解答题

17.已知函数f(x)=lnx-a(a∈R)与函数$F(x)=x+\frac{2}{x}$有公共切线.
(Ⅰ)求a的取值范围;
(Ⅱ)若不等式xf(x)+e>2-a对于x>0的一切值恒成立,求a的取值范围.

查看答案和解析>>

科目:高中数学 来源: 题型:解答题

4.在极坐标系中,已知点A(2,$\frac{π}{2}$),B(1,-$\frac{π}{3}$),圆O的极坐标方程为ρ=4sinθ.
(Ⅰ)求直线AB的直角坐标方程;
(Ⅱ)求圆O的直角坐标方程.

查看答案和解析>>

科目:高中数学 来源: 题型:选择题

1.Sn是数列{an}的前n项和,Sn=3an-2a1,a3=$\frac{1}{4}$,bn=anlnan,则数列{bn}的最小项是(  )
A.第3项B.第4项C.第5项D.第6项

查看答案和解析>>

科目:高中数学 来源: 题型:选择题

2.已知直线x+y=m(m>0)与圆x2+y2=1相交于P,Q两点,且∠POQ=120°(其中O为原点),那么m的值是(  )
A.$\frac{{\sqrt{3}}}{3}$B.$\frac{{\sqrt{2}}}{2}$C.$\sqrt{2}$D.$\sqrt{3}$

查看答案和解析>>

同步练习册答案