精英家教网 > 高中数学 > 题目详情
3.将函数f(x)=cos2x图象上所有点向右平移$\frac{π}{4}$个单位长度后得到函数g(x)的图象,若g(x)在区间[0,a]上单调递增,则实数a的最大值为(  )
A.$\frac{π}{8}$B.$\frac{π}{4}$C.$\frac{π}{2}$D.$\frac{3}{4}π$

分析 由条件根据诱导公式、函数y=Asin(ωx+φ)的图象变换规律,求得g(x)的解析式,利用正弦函数的单调性即可得解.

解答 解:将函数f(x)=cos2x的图象向右平移$\frac{π}{4}$个单位后得到函数g(x)=cos2(x-$\frac{π}{4}$)=sin2x 的图象,
令2kπ-$\frac{π}{2}$≤2x≤2kπ+$\frac{π}{2}$,k∈Z,解得:kπ-$\frac{π}{4}$≤x≤kπ+$\frac{π}{4}$,k∈Z,
故当k=0时,g(x)在区间[0,$\frac{π}{4}$]上单调递增,
由于g(x)在区间[0,a]上单调递增,
可得:a≤$\frac{π}{4}$,即实数a的最大值为$\frac{π}{4}$.
故选:B.

点评 本题主要考查诱导公式的应用,函数y=Asin(ωx+φ)的图象变换规律,正弦函数的图象性质,属于基础题.

练习册系列答案
相关习题

科目:高中数学 来源: 题型:填空题

13.已知曲线C的方程为$\sqrt{(x-1)^{2}+{y}^{2}}$+$\sqrt{(x+1)^{2}+{y}^{2}}$=4,则曲线C的离心率$\frac{1}{2}$.

查看答案和解析>>

科目:高中数学 来源: 题型:选择题

14.已知F1,F2是椭圆C1与双曲线C2的公共焦点,点P是C1与C2的公共点,若椭圆C1的离心率e1=$\frac{\sqrt{3}}{2}$,∠F1PF2=$\frac{π}{2}$,则双曲线C2的离心率e2的值为(  )
A.$\frac{\sqrt{5}}{2}$B.$\frac{\sqrt{6}}{2}$C.$\sqrt{2}$D.$\sqrt{3}$

查看答案和解析>>

科目:高中数学 来源: 题型:解答题

11.在平面直角坐标系xOy中,以O为极点,x轴的正半轴为极轴建立极坐标系.若直线l的极坐标方程为$\sqrt{2}ρcos(θ-\frac{π}{4})-2=0$,曲线C的极坐标方程为:ρsin2θ=cosθ,将曲线C上所有点的横坐标缩短为原来的一半,纵坐标不变,然后再向右平移一个单位得到曲线C1
(Ⅰ)求曲线C1的直角坐标方程;
(Ⅱ)已知直线l与曲线C1交于A,B两点,点P(2,0),求|PA|+|PB|的值.

查看答案和解析>>

科目:高中数学 来源: 题型:选择题

18.现将5张连号的电影票分给甲、乙等5个人,每人一张,且甲、乙分得的电影票连号,则共有不同分法的种数为(  )
A.12B.24C.36D.48

查看答案和解析>>

科目:高中数学 来源: 题型:选择题

8.我国南宋时期的数学家秦九韶(约1202-1261)在他的著作《数书九章》中提出了多项式求值的秦九韶算法.如图所示的框图给出了利用秦九韶算法求多项式的一个实例.若输入的n=5,v=1,x=2,则程序框图计算的是(  )
A.25+24+23+22+2+1B.25+24+23+22+2+5
C.26+25+24+23+22+2+1D.24+23+22+2+1

查看答案和解析>>

科目:高中数学 来源: 题型:解答题

15.设函数f(x)=(x2+ax-a)•e-x(a∈R).
(Ⅰ)当a=0时,求曲线y=f(x)在点(-1,f(-1))处的切线方程;
(Ⅱ)设g(x)=x2-x-1,若对任意的t∈[0,2],存在s∈[0,2]使得f(s)≥g(t)成立,求a的取值范围.

查看答案和解析>>

科目:高中数学 来源: 题型:解答题

12.已知椭圆E:mx2+y2=1(m>0).
(Ⅰ)若椭圆E的右焦点坐标为$(\sqrt{3},0)$,求m的值;
(Ⅱ)由椭圆E上不同三点构成的三角形称为椭圆的内接三角形.若以B(0,1)为直角顶点的椭圆E的内接等腰直角三角形恰有三个,求m的取值范围.

查看答案和解析>>

科目:高中数学 来源: 题型:选择题

20.在等比数列{an}中,a1=2,公比q=2,若am=a1a2a3a4(m∈N*),则m=(  )
A.11B.10C.9D.8

查看答案和解析>>

同步练习册答案