精英家教网 > 高中数学 > 题目详情
13.已知曲线C的方程为$\sqrt{(x-1)^{2}+{y}^{2}}$+$\sqrt{(x+1)^{2}+{y}^{2}}$=4,则曲线C的离心率$\frac{1}{2}$.

分析 根据题意,对曲线方程变形可得$\frac{{x}^{2}}{4}$+$\frac{{y}^{2}}{3}$=1,分析可得曲线C为椭圆,计算可得c的值,由椭圆的离心率公式计算可得答案.

解答 解:根据题意,曲线C的方程为$\sqrt{(x-1)^{2}+{y}^{2}}$+$\sqrt{(x+1)^{2}+{y}^{2}}$=4,
变形可得$\frac{{x}^{2}}{4}$+$\frac{{y}^{2}}{3}$=1,
则曲线C为椭圆,其中a=2,b=$\sqrt{3}$,
则c=$\sqrt{4-3}$=1,
其离心率e=$\frac{c}{a}$=$\frac{1}{2}$;
故答案为:$\frac{1}{2}$.

点评 本题考查曲线与方程,涉及椭圆的几何性质,关键化简变形方程,得到曲线的标准方程.

练习册系列答案
相关习题

科目:高中数学 来源: 题型:解答题

3.已知a∈R,函数f(x)=ex-ax(e=2.71828…是自然对数的底数).
(I)若函数f(x)在区间(-e,-1)上是减函数,求a的取值范围;
(II)若函数F(x)=f(x)-(ex-2ax+2lnx+a)在区间(0,$\frac{1}{2}$)内无零点,求a的最大值.

查看答案和解析>>

科目:高中数学 来源: 题型:填空题

4.执行如图所示的程序框图,若输入x=6的值为6,则输出的x值为0.

查看答案和解析>>

科目:高中数学 来源: 题型:选择题

1.为考察某种药物对预防禽流感的效果,在四个不同的实验室取相同的个体进行动物试验,根据四个实验室得到的列联表画出如下四个等高条形图,最能体现该药物对预防禽流感有效果的图形是(  )
A.B.C.D.

查看答案和解析>>

科目:高中数学 来源: 题型:选择题

8.已知双曲线C:$\frac{{x}^{2}}{{a}^{2}}$-$\frac{{y}^{2}}{{b}^{2}}$=1(a>0,b>0)的一条渐近线与直线l:x-y+2=0平行,则双曲线C的离心率为(  )
A.$\frac{\sqrt{5}}{2}$B.$\sqrt{2}$C.$\frac{2\sqrt{3}}{3}$D.$\sqrt{10}$

查看答案和解析>>

科目:高中数学 来源: 题型:选择题

18.在平行四边形ABCD中,$|{\overrightarrow{AD}}|=3,|{\overrightarrow{AB}}|=5,\overrightarrow{AE}=\frac{2}{3}\overrightarrow{AD},\overrightarrow{BF}=\frac{1}{3}\overrightarrow{BC},cosA=\frac{3}{5}$,则$|{\overrightarrow{EF}}$|=(  )
A.$\sqrt{14}$B.$2\sqrt{5}$C.$4\sqrt{2}$D.$2\sqrt{11}$

查看答案和解析>>

科目:高中数学 来源: 题型:选择题

5.已知点F2,P分别为双曲线$\frac{x^2}{a^2}-\frac{y^2}{b^2}=1({a>0,b>0})$的右焦点与右支上的一点,O为坐标原点,若点M是PF2的中点,$|{\overrightarrow{O{F_2}}}|=|{\overrightarrow{{F_2}M}}$|,且$\overrightarrow{O{F_2}}•\overrightarrow{{F_2}M}=\frac{c^2}{2}$,则该双曲线的离心率为(  )
A.$\frac{{\sqrt{3}+1}}{2}$B.$\frac{3}{2}$C.$\sqrt{3}$D.$2\sqrt{3}$

查看答案和解析>>

科目:高中数学 来源: 题型:填空题

2.已知a,b,c,d∈R且满足$\frac{a+3lna}{b}$=$\frac{d-3}{2c}$=1,则(a-c)2+(b-d)2的最小值为$\frac{9}{5}$ln2$\frac{{e}^{2}}{3}$.

查看答案和解析>>

科目:高中数学 来源: 题型:选择题

3.将函数f(x)=cos2x图象上所有点向右平移$\frac{π}{4}$个单位长度后得到函数g(x)的图象,若g(x)在区间[0,a]上单调递增,则实数a的最大值为(  )
A.$\frac{π}{8}$B.$\frac{π}{4}$C.$\frac{π}{2}$D.$\frac{3}{4}π$

查看答案和解析>>

同步练习册答案