精英家教网 > 高中数学 > 题目详情
5.在直角坐标系xOy中,曲线C1的方程为$\frac{x^2}{9}+{y^2}=1$.以坐标原点为极点,以x轴的正半轴为极轴,建立极坐标系,曲线C2的极坐标方程为ρ2-8ρsinθ+15=0.
(Ⅰ)写出C1的参数方程和C2的直角坐标方程;
(Ⅱ)设点P在C1上,点Q在C2上,求|PQ|的最大值.

分析 (Ⅰ)利用三种方程的转化方法,写出C1的参数方程和C2的直角坐标方程;
(Ⅱ)设P(3cosα,sinα),则|PC2|=$\sqrt{(3cosα-4)^{2}+si{n}^{2}α}$=$\sqrt{8(cosα-\frac{3}{2})^{2}-1}$,即可求|PQ|的最大值.

解答 解:(Ⅰ)曲线C1的方程为$\frac{x^2}{9}+{y^2}=1$,参数方程为$\left\{\begin{array}{l}{x=3cosα}\\{y=sinα}\end{array}\right.$(α为参数).
曲线C2的极坐标方程为ρ2-8ρsinθ+15=0,直角坐标方程为x2+y2-8y+15=0,即(x-4)2+y2=1;
(Ⅱ)设P(3cosα,sinα),则|PC2|=$\sqrt{(3cosα-4)^{2}+si{n}^{2}α}$=$\sqrt{8(cosα-\frac{3}{2})^{2}-1}$,
∴cosα=-1,|PC2|max=7,
∴|PQ|的最大值为7+1=8.

点评 本题考查三种方程的转化,考查参数方程的运用,考查三角函数知识,属于中档题.

练习册系列答案
相关习题

科目:高中数学 来源: 题型:选择题

15.设偶函数y=2sin(ωx+φ)(ω>0,0<φ<π)的图象与直线y=2的某两个交点的横坐标分别为x1,x2,若|x2-x1||的最小值为π,则该函数在下列哪个区间上单调递增(  )
A.(0,$\frac{π}{2}$)B.(-$\frac{π}{4}$,$\frac{π}{4}$)C.(-$\frac{π}{2}$,-$\frac{π}{4}$)D.($\frac{π}{4}$,$\frac{3π}{4}$)

查看答案和解析>>

科目:高中数学 来源: 题型:解答题

16.在直角坐标系xOy中,直线$l:\left\{\begin{array}{l}x=tcosα\\ y=tsinα\end{array}\right.$(t为参数,$α∈(0,\frac{π}{2})$)与圆C:x2+y2-2x-4x+1=0相交于点A,B,以O为极点,x轴正半轴为极轴建立极坐标系.
(1)求直线l与圆C的极坐标方程;
(2)求$\frac{1}{{|{OA}|}}+\frac{1}{{|{OB}|}}$的最大值.

查看答案和解析>>

科目:高中数学 来源: 题型:选择题

13.下面四个残差图中可以反映出回归模型拟合精度较好的为(  )
A.图1B.图2C.图3D.图4

查看答案和解析>>

科目:高中数学 来源: 题型:选择题

20.秦九韶是我国南宋时期的数学家,普州(现四川省安岳县)人,他在所著的《数学九章》中提出的多项式求值的秦九韶算法至今仍是比较先进的算法.如图的程序框图是针对某一多项式求值的算法,如果输入的x的值为2,则输出的v的值为(  )
A.129B.144C.258D.289

查看答案和解析>>

科目:高中数学 来源: 题型:填空题

10.在△ABC中,a=4,b=$\sqrt{7},c=\sqrt{3}$,则角B=$\frac{π}{6}$.

查看答案和解析>>

科目:高中数学 来源: 题型:填空题

17.在极坐标系中,极点到直线ρcosθ=1的距离为1.

查看答案和解析>>

科目:高中数学 来源: 题型:填空题

14.在△ABC中,角A,B,C对应的边长分别是a,b,c,且$\sqrt{3}asinB=bcosA$,则角A的大小为 $\frac{π}{6}$.

查看答案和解析>>

科目:高中数学 来源: 题型:填空题

15.已知实数x,y满足条件$\left\{\begin{array}{l}x-y+3≥0\\ 2x+y-4≥0\\ x≤3\end{array}\right.$则z=x2+(y+1)2的最小值为5.

查看答案和解析>>

同步练习册答案