精英家教网 > 高中数学 > 题目详情
16.在直角坐标系xOy中,直线$l:\left\{\begin{array}{l}x=tcosα\\ y=tsinα\end{array}\right.$(t为参数,$α∈(0,\frac{π}{2})$)与圆C:x2+y2-2x-4x+1=0相交于点A,B,以O为极点,x轴正半轴为极轴建立极坐标系.
(1)求直线l与圆C的极坐标方程;
(2)求$\frac{1}{{|{OA}|}}+\frac{1}{{|{OB}|}}$的最大值.

分析 (1)利用三种方程的转化方法,求直线l与圆C的极坐标方程;
(2)利用极径的意义,即可求$\frac{1}{{|{OA}|}}+\frac{1}{{|{OB}|}}$的最大值.

解答 解:(1)直线l的极坐标方程为θ=α(ρ∈R),
圆C的极坐标方程为ρ2-2ρcosθ-4ρsinθ+1=0,
(2)θ=α,代入ρ2-2ρcosθ-4ρsinθ+1=0,
得ρ2-2ρcosα-4ρsinα+1=0,
显然${ρ_1}>0,{ρ_2}>0,\frac{1}{{|{OA}|}}+\frac{1}{{|{OB}|}}$=$\frac{{{ρ_1}+{ρ_2}}}{{{ρ_1}{ρ_2}}}=2cosα+4sinα$=$2\sqrt{5}cos(α-φ)≤2\sqrt{5}$,
所以$\frac{1}{{|{OA}|}}+\frac{1}{{|{OB}|}}$的最大值为$2\sqrt{5}$.

点评 本题考查三种方程的转化,考查极径的意义,考查韦达定理,属于中档题.

练习册系列答案
相关习题

科目:高中数学 来源: 题型:填空题

6.已知实数2,m,8构成一个等差数列,则圆锥曲线$\frac{{x}^{2}}{m}$+y2=1的焦距为4.

查看答案和解析>>

科目:高中数学 来源: 题型:选择题

7.已知点A(0,2),抛物线C:y2=mx(m>0)的焦点为F,射线FA与抛物线C相交于点M,与其准线相交于点N,若|FM|:|MN|=1:2,则△OFN的面积为(  )
A.$8\sqrt{3}$B.$4\sqrt{3}$C.$\frac{8\sqrt{3}}{3}$D.$\frac{4\sqrt{3}}{3}$

查看答案和解析>>

科目:高中数学 来源: 题型:填空题

4.若函数y=2x3+1与y=3x2-b的图象在一个公共点处的切线相同,则实数b=0或-1.

查看答案和解析>>

科目:高中数学 来源: 题型:解答题

11.已知函数f(x)=sinωxcosωx-$\sqrt{3}{cos^2}ωx+\frac{{\sqrt{3}}}{2}$(ω>0)图象的两条相邻对称轴为$\frac{π}{2}$.
(1)求函数y=f(x)的对称轴方程;
(2)若函数y=f(x)-$\frac{1}{3}$在(0,π)上的零点为x1,x2,求cos(x1-x2)的值.

查看答案和解析>>

科目:高中数学 来源: 题型:解答题

1.已知函数f(x)=(x+1)21n(x+1)-x.
(1)求函数f(x)的单调区间;
(2)设当x≥0时,f(x)≥ax2,求实数a的取值范围.

查看答案和解析>>

科目:高中数学 来源: 题型:解答题

8.某中学举行了一次“环保知识竞赛”活动.为了了解本次竞赛学生成绩情况,从中抽取了部分学生的分数作为样本进行统计.按照[50,60),[60,70),[70,80),[80,90),[90,100)的分组作出频率分布直方图,并作出样本分数的茎叶图(图中仅列出了得分在[50,60),[90,100)的数据)

(Ⅰ)求样本容量n和频率分布直方图中x、y的值;
(Ⅱ)在选取的样本中,从竞赛成绩是80分以上(含80分)的同学中随机抽取2名同学到市政广场参加环保宣传的志愿者活动,求所抽取的2名同学来自不同组的概率.

查看答案和解析>>

科目:高中数学 来源: 题型:解答题

5.在直角坐标系xOy中,曲线C1的方程为$\frac{x^2}{9}+{y^2}=1$.以坐标原点为极点,以x轴的正半轴为极轴,建立极坐标系,曲线C2的极坐标方程为ρ2-8ρsinθ+15=0.
(Ⅰ)写出C1的参数方程和C2的直角坐标方程;
(Ⅱ)设点P在C1上,点Q在C2上,求|PQ|的最大值.

查看答案和解析>>

科目:高中数学 来源: 题型:选择题

6.在复平面内,复数z的对应点为(1,2),复数z的共轭复数为(  )
A.1+2iB.1-2iC.-2+iD.-2-i

查看答案和解析>>

同步练习册答案