分析 当y1=y2时,对于任意x1,x2,都有|AB|≥e恒成立,可得:${e}^{{x}_{1}}$=1+ln(x2-a),x2-x1≥e,一方面0<1+ln(x2-m)≤${e}^{{x}_{2}-e}$,x2>a+$\frac{1}{e}$.利用lnx≤x-1(x≥1),考虑x2-m≥1时.可得1+ln(x2-m)≤x2-m,令x2-m≤${e}^{{x}_{2}-e}$,可得m≥x-ex-e,利用导数求其最大值即可得出.
解答 解:当y1=y2时,对于任意x1,x2,都有|AB|≥e恒成立,可得:${e}^{{x}_{1}}$=1+ln(x2-a),x2-x1≥e,
∴0<1+ln(x2-a)≤${e}^{{x}_{2}-e}$,∴x2>a+$\frac{1}{e}$
∵lnx≤x-1(x≥1),考虑x2-a≥1时.
∴1+ln(x2-a)≤x2-a,
令x2-a≤${e}^{{x}_{2}-e}$,
化为a≥x-ex-e,x>a+$\frac{1}{e}$.
令f(x)=x-ex-e,则f′(x)=1-ex-e,可得x=e时,f(x)取得最大值.
∴a≥e-1.
∴a的最小值为e-1.
故答案为e-1.
点评 本题考查了利用导数研究函数的单调性极值与最值、不等式的解法、方程的解法、等价转化方法,考查了分类讨论方法、推理能力与计算能力,属于难题.
科目:高中数学 来源: 题型:选择题
| A. | -2 | B. | 1 | C. | 0 | D. | -1 |
查看答案和解析>>
科目:高中数学 来源: 题型:选择题
| A. | 2 | B. | 3 | C. | 4 | D. | 9 |
查看答案和解析>>
科目:高中数学 来源: 题型:解答题
查看答案和解析>>
科目:高中数学 来源: 题型:选择题
| A. | $\frac{3+\sqrt{3}+2\sqrt{2}}{2}$ | B. | $\frac{1+\sqrt{3}+\sqrt{2}}{2}$ | C. | $\frac{1+\sqrt{3}+2\sqrt{2}}{2}$ | D. | $\frac{3}{2}$+2$\sqrt{2}$ |
查看答案和解析>>
科目:高中数学 来源: 题型:选择题
| A. | 1 | B. | $\frac{10}{11}$ | C. | $\frac{5}{6}$ | D. | $\frac{10}{21}$ |
查看答案和解析>>
科目:高中数学 来源: 题型:解答题
查看答案和解析>>
科目:高中数学 来源: 题型:填空题
查看答案和解析>>
科目:高中数学 来源: 题型:解答题
| 贷款期限 | 6个月 | 12个月 | 18个月 | 24个月 | 36个月 |
| 频数 | 20 | 40 | 20 | 10 | 10 |
查看答案和解析>>
湖北省互联网违法和不良信息举报平台 | 网上有害信息举报专区 | 电信诈骗举报专区 | 涉历史虚无主义有害信息举报专区 | 涉企侵权举报专区
违法和不良信息举报电话:027-86699610 举报邮箱:58377363@163.com