| A. | -2 | B. | 1 | C. | 0 | D. | -1 |
分析 根据f(x)和f(x+1)的奇偶性便可得到f(x)=f(x-1+1)=f(x-4),从而得出f(x)是周期为4的周期函数,而可以求出f(2)=0,从而可以得出f(2016)+f(2015)=f(2)-f(1)=-1.
解答 解:∵f(x)为R上的奇函数,f(x+1)为偶函数,
∴f(x)=f(x-1+1)=f(-x+2)=-f(x-2)=f(x-4);
∴f(x)是周期为4的周期函数;
∴f(2016)+f(2015)=f(2+503×4)+f(-1+504×4)=f(2)-f(1)=f(2)-1;
f(-1+1)=f(1+1)=0;
即f(2)=0;
∴f(2014)+f(2015)=0-1=-1.
故选:D.
点评 考查奇函数、偶函数的定义,以及周期函数的定义,清楚偶函数的定义:f(-x)=f(x),是自变量换上-x后函数值不变.
科目:高中数学 来源: 题型:解答题
查看答案和解析>>
科目:高中数学 来源: 题型:选择题
| A. | $\frac{3}{2}$ | B. | 3 | C. | $2\sqrt{3}$ | D. | $\frac{{9\sqrt{3}}}{4}$ |
查看答案和解析>>
科目:高中数学 来源: 题型:选择题
| A. | $({\frac{5}{12},\frac{11}{24}}]$ | B. | $({0,\frac{5}{12}}]∪[{\frac{11}{24},\frac{1}{2}})$ | C. | $({0,\frac{1}{2}})$ | D. | $({0,\frac{5}{24}}]∪[{\frac{5}{12},\frac{11}{24}}]$ |
查看答案和解析>>
科目:高中数学 来源: 题型:选择题
| A. | f(x)=2x | B. | f(x)=1-|x| | C. | $f(x)=\frac{1}{x}-x$ | D. | f(x)=ln(x+1) |
查看答案和解析>>
科目:高中数学 来源: 题型:解答题
查看答案和解析>>
科目:高中数学 来源: 题型:选择题
| A. | $\frac{1}{2}$ | B. | -$\frac{1}{2}$ | C. | $\frac{\sqrt{3}}{2}$ | D. | -$\frac{\sqrt{3}}{2}$ |
查看答案和解析>>
科目:高中数学 来源: 题型:填空题
查看答案和解析>>
湖北省互联网违法和不良信息举报平台 | 网上有害信息举报专区 | 电信诈骗举报专区 | 涉历史虚无主义有害信息举报专区 | 涉企侵权举报专区
违法和不良信息举报电话:027-86699610 举报邮箱:58377363@163.com