精英家教网 > 高中数学 > 题目详情
14.已知函数满足一下两个条件:①任意x1,x2∈(0,+∞),且x1≠x2时,(x1-x2)[f(x1)-f(x2)]<0;②对定义域内任意x有f(x)+f(-x)=0,则符合条件的函数是(  )
A.f(x)=2xB.f(x)=1-|x|C.$f(x)=\frac{1}{x}-x$D.f(x)=ln(x+1)

分析 由①可知f(x)在(0,+∞)上是减函数,由②可知f(x)是奇函数.逐个分析各选项是否符合两条件即可.

解答 解:由①可知f(x)在(0,+∞)上是减函数,由②可知f(x)是奇函数.
对于A,f(x)=2x是增函数,不符合题意;
对于B,f(-x)+f(x)=1-|-x|+1-|x|=2-2|x|≠0,不符合题意,
对于D,f(x)的定义域为(-1,+∞),故f(x)不是奇函数,不符合题意;
故选C.

点评 本题考查了函数奇偶性与单调性的判断,属于中档题.

练习册系列答案
相关习题

科目:高中数学 来源: 题型:填空题

4.公差不为零的等差数列{an}的前n项和为Sn,若a4是a2与a7的等比中项,S5=50,则S8等于104.

查看答案和解析>>

科目:高中数学 来源: 题型:填空题

5.在△ABC中,内角A、B、C的对边分别是a、b、c,若c=2a,sinB=$\sqrt{3}$sinA,则B=$\frac{π}{3}$.

查看答案和解析>>

科目:高中数学 来源: 题型:解答题

2.已知集合U={1,2,…,n}(n∈N*,n≥2),对于集合U的两个非空子集A,B,若A∩B=∅,则称(A,B)为集合U的一组“互斥子集”.记集合U的所有“互斥子集”的组数为f(n)(视(A,B)与(B,A)为同一组“互斥子集”).
(1)写出f(2),f(3),f(4)的值;
(2)求f(n).

查看答案和解析>>

科目:高中数学 来源: 题型:选择题

9.若集合A={x|-1<x<2},B={x|-2<x<1},则集合A∪B=(  )
A.{x|-1<x<1}B.{x|-2<x<1}C.{x|-2<x<2}D.{x|0<x<1}

查看答案和解析>>

科目:高中数学 来源: 题型:选择题

19.已知奇函数f(x)的定义域为R,若f(x+1)为偶函数,且f(1)=1,则f(2016)+f(2015)=(  )
A.-2B.1C.0D.-1

查看答案和解析>>

科目:高中数学 来源: 题型:填空题

5.化简:$\frac{1-cosθ-sinθ}{1+cosθ-sinθ}$=-tan$\frac{θ}{2}$.

查看答案和解析>>

科目:高中数学 来源: 题型:选择题

2.已知椭圆M:$\frac{{x}^{2}}{{a}^{2}}$+y2=1,圆C:x2+y2=6-a2在第一象限有公共点P,设圆C在点P处的切线斜率为k1,椭圆M在点P处的切线斜率为k2,则$\frac{{k}_{1}}{{k}_{2}}$的取值范围为(  )
A.(1,6)B.(1,5)C.(3,6)D.(3,5)

查看答案和解析>>

科目:高中数学 来源: 题型:选择题

3.一个几何体的三视图如图所示,则该几何体的表面积为(  )
A.$\frac{3+\sqrt{3}+2\sqrt{2}}{2}$B.$\frac{1+\sqrt{3}+\sqrt{2}}{2}$C.$\frac{1+\sqrt{3}+2\sqrt{2}}{2}$D.$\frac{3}{2}$+2$\sqrt{2}$

查看答案和解析>>

同步练习册答案