精英家教网 > 高中数学 > 题目详情
5.化简:$\frac{1-cosθ-sinθ}{1+cosθ-sinθ}$=-tan$\frac{θ}{2}$.

分析 利用利用二倍角公式化简所给的式子,可得结果.

解答 解:$\frac{1-cosθ-sinθ}{1+cosθ-sinθ}$=$\frac{1-(1-{2sin}^{2}\frac{θ}{2})-2sin\frac{θ}{2}cos\frac{θ}{2}}{1+{2cos}^{2}\frac{θ}{2}-1-2sin\frac{θ}{2}cos\frac{θ}{2}}$ 
=$\frac{2sin\frac{θ}{2}(sin\frac{θ}{2}-cos\frac{θ}{2})}{2cos\frac{θ}{2}(cos\frac{θ}{2}-sin\frac{θ}{2})}$=-tan$\frac{θ}{2}$,
故答案为:-tan$\frac{θ}{2}$.

点评 本题主要考查利用二倍角公式进行化简求值,属于基础题.

练习册系列答案
相关习题

科目:高中数学 来源: 题型:解答题

16.设i为虚数单位,n为正整数,θ∈[0,2π).
(1)用数学归纳法证明:(cosθ+isinθ)n=cosnθ+isinnθ;
(2)已知$z=\sqrt{3}-i$,试利用(1)的结论计算z10

查看答案和解析>>

科目:高中数学 来源: 题型:填空题

17.设等差数列{an}的前n项和为Sn,若公差d=2,a5=10,则S10的值是110.

查看答案和解析>>

科目:高中数学 来源: 题型:选择题

14.已知函数满足一下两个条件:①任意x1,x2∈(0,+∞),且x1≠x2时,(x1-x2)[f(x1)-f(x2)]<0;②对定义域内任意x有f(x)+f(-x)=0,则符合条件的函数是(  )
A.f(x)=2xB.f(x)=1-|x|C.$f(x)=\frac{1}{x}-x$D.f(x)=ln(x+1)

查看答案和解析>>

科目:高中数学 来源: 题型:选择题

1.对函数f(x),在使f(x)≥M成立的所有常数M中,我们把M的最大值叫做函数f(x)的下确界.现已知定义在R上的偶函数f(x)满足f(1-x)=f(1+x),当x∈[0,1]时,f(x)=-3x2+2,则f(x)的下确界为(  )
A.2B.1C.-2D.-1

查看答案和解析>>

科目:高中数学 来源: 题型:解答题

10.已知x≥0,求证:x≥sinx.

查看答案和解析>>

科目:高中数学 来源: 题型:解答题

17.已知函数f(x)=exsinx-cosx,g(x)=xcosx-$\sqrt{2}$ex,(其中e是自然对数的底数).
(1)?x1∈[0,$\frac{π}{2}$],?x2∈[0,$\frac{π}{2}$]使得不等式f(x1)+g(x2)≥m成立,试求实数m的取值范围;
(2)若x>-1,求证:f(x)-g(x)>0.

查看答案和解析>>

科目:高中数学 来源: 题型:选择题

14.设集合M={-1,1},N={x|$\frac{1}{x}$<2},则下列结论正确的是(  )
A.N⊆MB.M⊆NC.M∩N=ND.M∩N={1}

查看答案和解析>>

科目:高中数学 来源: 题型:选择题

15.设偶函数y=2sin(ωx+φ)(ω>0,0<φ<π)的图象与直线y=2的某两个交点的横坐标分别为x1,x2,若|x2-x1||的最小值为π,则该函数在下列哪个区间上单调递增(  )
A.(0,$\frac{π}{2}$)B.(-$\frac{π}{4}$,$\frac{π}{4}$)C.(-$\frac{π}{2}$,-$\frac{π}{4}$)D.($\frac{π}{4}$,$\frac{3π}{4}$)

查看答案和解析>>

同步练习册答案