精英家教网 > 高中数学 > 题目详情
16.设i为虚数单位,n为正整数,θ∈[0,2π).
(1)用数学归纳法证明:(cosθ+isinθ)n=cosnθ+isinnθ;
(2)已知$z=\sqrt{3}-i$,试利用(1)的结论计算z10

分析 (1)利用数学归纳法即可证明,注意和差公式的应用.
(2)利用(1)的结论即可得出.

解答 证明:(1)证明:1°当n=1时,左边=右边=cosθ+isinθ,所以命题成立;
2°假设当n=k时,命题成立,即(cosθ+isinθ)k=coskθ+isinkθ,
则当n=k+1时,(cosx+isinθ)k+1=(cosθ+isinθ)k•(cosθ+isinθ)
=(coskθ+isinkθ)(cosθ+isinθ)
=(coskθcosθ-sinkθsinθ)+i(sinkθcosθ+coskθsinθ)
=cos(k+1)θ+isin(k+1)θ
∴当n=k+1时,命题成立;
综上,由1°和2°可得,(cosθ+isinθ)n=cosnθ+isinnθ.
(2)$z=\sqrt{3}-i$=2($\frac{\sqrt{3}}{2}$-$\frac{1}{2}i$)=2(cos$\frac{11π}{6}$+isin$\frac{11π}{6}$),
∴z10=210(cos$\frac{110}{6}$π+isin$\frac{110}{6}$π)=210(cos$\frac{π}{3}$+isin$\frac{π}{3}$)=210($\frac{1}{2}$+$\frac{\sqrt{3}}{2}$i)=512+512$\sqrt{3}$i

点评 本题考查了数学归纳法、复数的运算法则、模的计算公式、和差公式、同角三角函数基本关系式,考查了推理能力与计算能力,属于中档题.

练习册系列答案
相关习题

科目:高中数学 来源: 题型:选择题

6.已知{an}为无穷等比数列,且公比q>1,记Sn为{an}的前n项和,则下面结论正确的是(  )
A.a3>a2B.a1+a2>0C.$\{{a_n}^2\}$是递增数列D.Sn存在最小值

查看答案和解析>>

科目:高中数学 来源: 题型:选择题

7.已知△ABC的顶点B,C在椭圆$\frac{{x}^{2}}{{a}^{2}}$+$\frac{{y}^{2}}{{b}^{2}}$=1(a>b>0)上,椭圆的一个焦点为A,另一个焦点在边BC上,若△ABC是边长为2的正三角形,则b=(  )
A.$\frac{\sqrt{6}}{2}$B.$\frac{\sqrt{6}}{3}$C.$\frac{\sqrt{6}}{4}$D.$\frac{\sqrt{6}}{6}$

查看答案和解析>>

科目:高中数学 来源: 题型:填空题

4.公差不为零的等差数列{an}的前n项和为Sn,若a4是a2与a7的等比中项,S5=50,则S8等于104.

查看答案和解析>>

科目:高中数学 来源: 题型:解答题

11.已知过点$(2,\sqrt{2})$且离心率为$\frac{{\sqrt{2}}}{2}$的椭圆C的中心在原点,焦点在x轴上.
(1)求椭圆C的方程;
(2)设点P是椭圆的左准线与x轴的交点,过点P的直线l与椭圆C相交于M,N两点,记椭圆C的左,右焦点分别为F1,F2,上下两个顶点分别为B2,B1.当线段MN的中点落在四边形F1B1F2B2内(包括边界)时,求直线l斜率的取值范围.

查看答案和解析>>

科目:高中数学 来源: 题型:填空题

1.知a,b,c,d是正实数,且abcd=1,求证:a5+b5+c5+d5≥a+b+c+d.

查看答案和解析>>

科目:高中数学 来源: 题型:选择题

8.已知变量x,y满足约束条件$\left\{\begin{array}{l}{y≤2}\\{x+y≥1}\\{x-y≤1}\end{array}\right.$,则z=3x+y的最小值为(  )
A.-1B.1C.0D.11

查看答案和解析>>

科目:高中数学 来源: 题型:填空题

5.在△ABC中,内角A、B、C的对边分别是a、b、c,若c=2a,sinB=$\sqrt{3}$sinA,则B=$\frac{π}{3}$.

查看答案和解析>>

科目:高中数学 来源: 题型:填空题

5.化简:$\frac{1-cosθ-sinθ}{1+cosθ-sinθ}$=-tan$\frac{θ}{2}$.

查看答案和解析>>

同步练习册答案