分析 由正弦定理化简已知可得b=$\sqrt{3}$a,利用余弦定理可得cosB=$\frac{1}{2}$,结合范围B∈(0,π),可得B的值.
解答 解:∵sinB=$\sqrt{3}$sinA,c=2a,
∴由正弦定理可得:b=$\sqrt{3}$a,
∴由余弦定理可得:cosB=$\frac{{a}^{2}+{c}^{2}-{b}^{2}}{2ac}$=$\frac{{a}^{2}+(2a)^{2}-3{a}^{2}}{2a•2a}$=$\frac{1}{2}$,
∵B∈(0,π),
∴B=$\frac{π}{3}$.
故答案为:$\frac{π}{3}$.
点评 本题主要考查了正弦定理,余弦定理在解三角形中的应用,考查了转化思想,属于基础题.
科目:高中数学 来源: 题型:解答题
查看答案和解析>>
科目:高中数学 来源: 题型:填空题
查看答案和解析>>
科目:高中数学 来源: 题型:选择题
| A. | x2-$\frac{{y}^{2}}{9}$=1 | B. | $\frac{{x}^{2}}{9}$-y2=1 | C. | $\frac{{x}^{2}}{2}$-$\frac{{y}^{2}}{18}$=1 | D. | $\frac{{x}^{2}}{18}$-$\frac{{y}^{2}}{2}$=1 |
查看答案和解析>>
科目:高中数学 来源: 题型:选择题
| A. | $\frac{3}{2}$ | B. | 3 | C. | $2\sqrt{3}$ | D. | $\frac{{9\sqrt{3}}}{4}$ |
查看答案和解析>>
科目:高中数学 来源: 题型:选择题
| A. | f(x)=2x | B. | f(x)=1-|x| | C. | $f(x)=\frac{1}{x}-x$ | D. | f(x)=ln(x+1) |
查看答案和解析>>
科目:高中数学 来源: 题型:选择题
| A. | N⊆M | B. | M⊆N | C. | M∩N=N | D. | M∩N={1} |
查看答案和解析>>
湖北省互联网违法和不良信息举报平台 | 网上有害信息举报专区 | 电信诈骗举报专区 | 涉历史虚无主义有害信息举报专区 | 涉企侵权举报专区
违法和不良信息举报电话:027-86699610 举报邮箱:58377363@163.com