精英家教网 > 高中数学 > 题目详情
20.双曲线$\frac{{x}^{2}}{{a}^{2}}$-$\frac{{y}^{2}}{{b}^{2}}$=1(a>0,b>0)的左、右焦点为F1、F2,其中一条渐近线方程为y=3x,过点F2作x轴的垂线与双曲线的一个交点为M,若△MF1F2的面积为18$\sqrt{10}$,则双曲线的方程为(  )
A.x2-$\frac{{y}^{2}}{9}$=1B.$\frac{{x}^{2}}{9}$-y2=1C.$\frac{{x}^{2}}{2}$-$\frac{{y}^{2}}{18}$=1D.$\frac{{x}^{2}}{18}$-$\frac{{y}^{2}}{2}$=1

分析 根据双曲线的渐近线方程,求得b=3a,求得M点坐标,根据三角形的面积公式,及双曲线的性质,即可求得a和b的值,即可求得双曲线方程.

解答 解:由双曲线的焦点在x轴上,双曲线的渐近线方程y=$\frac{b}{a}$x,则b=3a,①
假设M在第一象限,则M(c,$\frac{{b}^{2}}{a}$),
则△MF1F2的面积S=$\frac{1}{2}$×2c×$\frac{{b}^{2}}{a}$=$\frac{{b}^{2}c}{a}$,
即$\frac{{b}^{2}c}{a}$=18$\sqrt{10}$,②
则c2=a2-b2,③
解得:a2=2,b2=18,c2=20,
∴双曲线的标准方程:$\frac{{x}^{2}}{2}-\frac{{y}^{2}}{18}=1$,
故选C.

点评 本题考查双曲线的标准方程及简单几何性质,三角形的面积公式,考查计算能力,属于中档题.

练习册系列答案
相关习题

科目:高中数学 来源: 题型:解答题

10.已知{an}是各项为正数的等差数列,Sn为其前n项和,且4Sn=(an+1)2
(Ⅰ)求a1,a2的值及{an}的通项公式;
(Ⅱ)求数列$\{{S_n}-\frac{7}{2}{a_n}\}$的最小值.

查看答案和解析>>

科目:高中数学 来源: 题型:解答题

11.已知过点$(2,\sqrt{2})$且离心率为$\frac{{\sqrt{2}}}{2}$的椭圆C的中心在原点,焦点在x轴上.
(1)求椭圆C的方程;
(2)设点P是椭圆的左准线与x轴的交点,过点P的直线l与椭圆C相交于M,N两点,记椭圆C的左,右焦点分别为F1,F2,上下两个顶点分别为B2,B1.当线段MN的中点落在四边形F1B1F2B2内(包括边界)时,求直线l斜率的取值范围.

查看答案和解析>>

科目:高中数学 来源: 题型:选择题

8.已知变量x,y满足约束条件$\left\{\begin{array}{l}{y≤2}\\{x+y≥1}\\{x-y≤1}\end{array}\right.$,则z=3x+y的最小值为(  )
A.-1B.1C.0D.11

查看答案和解析>>

科目:高中数学 来源: 题型:解答题

15.如图,在三棱柱ABC-A1B1C1中,CC1⊥平面ABC,AC=BC=5,AB=6,M是CC1中点,CC1=8.
(1)求证:平面AB1M⊥平面A1ABB1
(2)求平面AB1M与平面ABC所成二面角的正弦值.

查看答案和解析>>

科目:高中数学 来源: 题型:填空题

5.在△ABC中,内角A、B、C的对边分别是a、b、c,若c=2a,sinB=$\sqrt{3}$sinA,则B=$\frac{π}{3}$.

查看答案和解析>>

科目:高中数学 来源: 题型:填空题

12.若x,y满足约束条件$\left\{{\begin{array}{l}{2x+y-2≥0}\\{x-y+2≥0}\\{4x-y-4≤0}\end{array}}\right.$,若z=ax-y有最小值6,则实数a等于5.

查看答案和解析>>

科目:高中数学 来源: 题型:选择题

9.若集合A={x|-1<x<2},B={x|-2<x<1},则集合A∪B=(  )
A.{x|-1<x<1}B.{x|-2<x<1}C.{x|-2<x<2}D.{x|0<x<1}

查看答案和解析>>

科目:高中数学 来源: 题型:选择题

9.高三某班15名学生一次模拟考试成绩用茎叶图表示如图1,执行图2所示的程序框图,若输入的ai(i=1,2,…,15)分别为这15名学生的考试成绩,则输出的结果为(  )
A.6B.7C.8D.9

查看答案和解析>>

同步练习册答案