精英家教网 > 高中数学 > 题目详情
10.在直四棱柱ABCD-A1B1C1D1中,底面ABCD为菱形,E,F分别是BB1,DD1的中点,G为AE的中点且FG=3,则△EFG的面积的最大值为(  )
A.$\frac{3}{2}$B.3C.$2\sqrt{3}$D.$\frac{{9\sqrt{3}}}{4}$

分析 建立坐标系,使用向量法求出E到直线FG的距离,代入面积公式,使用不等式的性质求出最值.

解答 解:连接AC交BD于O,
∵底面ABCD是菱形,∴AC⊥BD,
以OC,OD,OZ为坐标轴建立空间直角坐标系O-xyz,
设OC=a,OD=b,棱柱的高为h,
则A(-a,0,0),E(0,-b,$\frac{h}{2}$),F(0,b,$\frac{h}{2}$),∴G(-$\frac{a}{2}$,-$\frac{b}{2}$,$\frac{h}{4}$).
$\overrightarrow{FG}$=(-$\frac{a}{2}$,-$\frac{3b}{2}$,-$\frac{h}{4}$),$\overrightarrow{FE}$=(0,-2b,0),
∴cos<$\overrightarrow{FG},\overrightarrow{FE}$>=$\frac{\overrightarrow{FG}•\overrightarrow{FE}}{|\overrightarrow{FG}|•|\overrightarrow{FE}|}$=$\frac{3{b}^{2}}{3•2b}$=$\frac{b}{2}$,
∴E到直线FG的距离d=|$\overrightarrow{FE}$|sin<$\overrightarrow{FG},\overrightarrow{FE}$>=2b•$\frac{\sqrt{4-{b}^{2}}}{2}$=b$\sqrt{4-{b}^{2}}$,
∴S△EFG=$\frac{1}{2}•FG•d$=$\frac{3}{2}b\sqrt{4-{b}^{2}}$=$\frac{3}{2}\sqrt{{b}^{2}(4-{b}^{2})}$≤$\frac{3}{2}$×$\frac{{b}^{2}+4-{b}^{2}}{2}$=3.当且仅当b2=4-b2即b2=2时取等号.
故选:B.

点评 本题考查了空间向量与空间距离的计算,不等式的应用,属于中档题.

练习册系列答案
相关习题

科目:高中数学 来源: 题型:填空题

20.设P是双曲线$\frac{2{x}^{2}}{3}$-$\frac{{y}^{2}}{6}$=1上一动点,过点P向圆x2+y2=2作两条切线(P在圆外),这两条切线的斜率分别为k1、k2,则k1k2=4.

查看答案和解析>>

科目:高中数学 来源: 题型:填空题

1.知a,b,c,d是正实数,且abcd=1,求证:a5+b5+c5+d5≥a+b+c+d.

查看答案和解析>>

科目:高中数学 来源: 题型:选择题

18.已知集合A={x|0<x≤1},B={x|x2<1},则(∁RA)∩B=(  )
A.(0,1)B.[0,1]C.(-1,1]D.(-1,0]

查看答案和解析>>

科目:高中数学 来源: 题型:填空题

5.在△ABC中,内角A、B、C的对边分别是a、b、c,若c=2a,sinB=$\sqrt{3}$sinA,则B=$\frac{π}{3}$.

查看答案和解析>>

科目:高中数学 来源: 题型:选择题

15.执行如图所示的程序框图,运行相应的程序,若输入x的值为 2,则输出S的值为(  )
A.64B.84C.340D.1364

查看答案和解析>>

科目:高中数学 来源: 题型:解答题

2.已知集合U={1,2,…,n}(n∈N*,n≥2),对于集合U的两个非空子集A,B,若A∩B=∅,则称(A,B)为集合U的一组“互斥子集”.记集合U的所有“互斥子集”的组数为f(n)(视(A,B)与(B,A)为同一组“互斥子集”).
(1)写出f(2),f(3),f(4)的值;
(2)求f(n).

查看答案和解析>>

科目:高中数学 来源: 题型:选择题

19.已知奇函数f(x)的定义域为R,若f(x+1)为偶函数,且f(1)=1,则f(2016)+f(2015)=(  )
A.-2B.1C.0D.-1

查看答案和解析>>

科目:高中数学 来源: 题型:选择题

19.已知点(x1,y1)在函数y=sin2x图象上,点(x2,y2)在函数y=3的图象上,则(x1-x22+(y1-y22的最小值为(  )
A.2B.3C.4D.9

查看答案和解析>>

同步练习册答案